
ClusterShell Documentation
Release 1.8

Stephane Thiell

Oct 25, 2017

Contents

1 Introduction 3

2 Release Notes 5
2.1 Version 1.8 . 5

2.1.1 Main changes in 1.8 . 5
2.2 Version 1.7 . 8

2.2.1 Version 1.7.3 . 8
2.2.2 Version 1.7.2 . 8
2.2.3 Version 1.7.1 . 8
2.2.4 Main changes in 1.7 . 9

3 Installation 13
3.1 Requirements . 13
3.2 Distribution . 13

3.2.1 Fedora . 14
3.2.2 Red Hat Enterprise Linux (and CentOS) . 14
3.2.3 openSUSE . 15
3.2.4 Debian . 16
3.2.5 Ubuntu . 16
3.2.6 Installing ClusterShell using PIP . 16

3.3 Source . 17

4 Configuration 19
4.1 clush . 19
4.2 Node groups . 20

4.2.1 groups.conf . 20
4.2.2 File-based group sources . 21
4.2.3 External group sources . 23

4.3 Library Defaults . 25

5 Tools 27
5.1 nodeset . 27

5.1.1 Usage basics . 27
5.1.2 Stepping and auto-stepping . 30
5.1.3 Zero-padding . 31
5.1.4 Leading and trailing digits . 31
5.1.5 Arithmetic operations . 32

i

5.1.6 Special operations . 33
5.1.7 Node groups . 35
5.1.8 Range sets . 40

5.2 cluset . 42
5.3 clush . 42

5.3.1 Target and filter nodes . 42
5.3.2 Flat execution mode . 43
5.3.3 Tree execution mode . 44
5.3.4 Non-interactive (or one-shot) mode . 46
5.3.5 Interactive mode . 48
5.3.6 File copying mode . 49
5.3.7 Reverse file copying mode . 50
5.3.8 Other options . 50

5.4 clubak . 51
5.4.1 Overview . 51
5.4.2 Tree trace mode (-T) . 52

6 Programming Guide 53
6.1 Node sets handling . 53

6.1.1 NodeSet class . 53
6.1.2 Node groups . 56
6.1.3 NodeSet object serialization . 57

6.2 Range sets . 58
6.2.1 RangeSet class . 58
6.2.2 RangeSetND class . 58

6.3 Task management . 59
6.3.1 Structure of Task . 59
6.3.2 Using Task objects . 59
6.3.3 Configuring explicit Shell Worker objects . 63

6.4 Programming Examples . 63
6.4.1 Remote command example (sequential mode) . 63
6.4.2 Remote command example with live output (event-based mode) 64
6.4.3 check_nodes.py example script . 64
6.4.4 Using NodeSet with Parallel Python Batch script using SLURM 66

7 Python API 69
7.1 NodeSet . 69

7.1.1 Usage example . 69
7.2 NodeUtils . 74
7.3 RangeSet . 76
7.4 RangeSetND . 79
7.5 MsgTree . 82
7.6 Task . 83
7.7 Defaults . 91
7.8 Event . 91
7.9 EngineTimer . 93
7.10 Workers . 95

7.10.1 Worker . 95
7.10.2 ExecWorker . 97
7.10.3 StreamWorker . 98
7.10.4 WorkerRsh . 100
7.10.5 WorkerPdsh . 100
7.10.6 WorkerPopen . 101
7.10.7 WorkerSsh . 101

ii

8 Going further 103
8.1 Running the test suite . 103
8.2 Bug reports . 103

9 Indices and tables 105

Python Module Index 107

iii

iv

ClusterShell Documentation, Release 1.8

Contents:

Contents 1

ClusterShell Documentation, Release 1.8

2 Contents

CHAPTER 1

Introduction

ClusterShell provides a light, unified and robust command execution Python framework, well-suited to ease daily
administrative tasks of nowadays Linux clusters. Some of the most important benefits of using ClusterShell are:

• to provide an efficient, parallel and highly scalable command execution engine in Python,

• to provide an unified node groups syntax and external group access (see the NodeSet class),

• to significantly speed up initial cluster setup and daily administrative tasks when using tools like clush and
nodeset.

Originally created by the HPC Linux system development team at CEA1 HPC center in France, ClusterShell is de-
signed around medium and long term ideas of sharing cluster administration development time, and this according to
two axes:

• sharing administrative applications between main components of the computing center: compute clusters, but
also storage clusters and server farms (so they can use the same efficient framework for their administrative
applications),

• sharing administration techniques across multiple generations of super-computing clusters (first of all, to avoid
that every cluster administration application has to implement its own command execution layer, but also to
encourage the adoption of event-based coding model in administration scripts).

Two available coding models make the library well-suited for simple scripts or for complex applications as well. Also,
the library is fully cluster-aware and has primarily been made for executing remote shell commands in parallel and
gathering output results. But it now also provides the developer a set of extra features for administrative applications,
like file copy support or time-based notifications (timers) which are discussed in this documentation.

1 French Alternative Energies and Atomic Energy Commission, a leading technological research organization in Europe

3

ClusterShell Documentation, Release 1.8

4 Chapter 1. Introduction

CHAPTER 2

Release Notes

Version 1.8

This adaptive release is now compatible with both Python 2 and Python 3.

We hope this release will help you manage your clusters, server farms or cloud farms! Special thanks to the many of
you that have sent us feedback on GitHub!

Warning: Support for Python 2.5 and below has been dropped in this version.

Main changes in 1.8

For more details, please have a look at GitHub Issues for 1.8 milestone.

CLI (command line interface)

If you use the clush or cluset/nodeset tools, there are no major changes since 1.7, though a few bug fixes and improve-
ments have been done:

• It is now possible to work with numeric node names with cluset/nodeset:

$ nodeset --fold 6704 6705 r931 r930
[6704-6705],r[930-931]

$ squeue -h -o '%i' -u $USER | cluset -f
[680240-680245,680310]

As a reminder, cluset/nodeset has always had an option to switch to numerical cluster ranges (only), using
-R/--rangeset:

5

https://github.com/cea-hpc/clustershell/issues?utf8=%E2%9C%93&q=is%3Aissue+milestone%3A1.8

ClusterShell Documentation, Release 1.8

$ squeue -h -o '%i' -u $USER | cluset -f -R
680240-680245,680310

• Node group configuration is now loaded and processed only when required. This is actually an improvement of
the NodeSet class that the tools readily benefit. This should improve both usability and performance.

• YAML group files are now ignored for users that don’t have the permission to read them (see File-based group
sources for more info about group files).

• clush now use slightly different colors that are legible on dark backgrounds.

• Tree execution mode:

– Better detection of the Python executable, and, if needed, we added a new environment variable to override
it, see Remote Python executable.

– You must use the same major version of Python on the gateways and the root node.

Python library

If you’re a developer and use the ClusterShell Python library, please read below.

Python 3 support

Starting in 1.8, the library can also be used with Python 3. The code is compatible with both Python 2 and 3 at the
same time. To make it possible, we performed a full code refactoring (without changing the behavior).

Note: When using Python 3, we recommend Python 3.4 or any more recent version.

Improved Event API

We’ve made some changes to EventHandler, a class that defines a simple interface to handle events generated by
Worker, EventTimer and EventPort objects.

Please note that all programs already based on EventHandler should work with this new version of ClusterShell
without any code change (backward API compatibility across 1.x versions is enforced). We use object introspection,
the ability to determine the type of an object at runtime, to make the Event API evolve smoothly. We do still rec-
ommend to change your code as soon as possible as we’ll break backward compatibility in the future major release
2.0.

The signatures of the following EventHandler methods changed in 1.8:

• EventHandler.ev_pickup(): new node argument

• EventHandler.ev_read(): new node, sname and msg arguments

• EventHandler.ev_hup(): new rc argument

• EventHandler.ev_close(): new timedout argument

Both old and new signatures are supported in 1.8. The old signatures will be deprecated in a future 1.x release and
removed in version 2.0.

The new methods aims to be more convenient to use by avoiding the need of accessing context-specific Worker
attributes like worker.current_node (replaced with the node argument in that case).

6 Chapter 2. Release Notes

ClusterShell Documentation, Release 1.8

Also, please note that the following EventHandler methods will be removed in 2.0:

• EventHandler.ev_error(): its use should be replaced with EventHandler.ev_read() by com-
paring the stream name sname with Worker.SNAME_STDERR, like in the example below:

class MyEventHandler(EventHandler):

def ev_read(self, worker, node, sname, msg):
if sname == worker.SNAME_STDERR:

print('error from %s: %s' % (node, msg))

• EventHandler.ev_timeout(): its use should be replaced with EventHandler.ev_close() by
checking for the new timedout argument, which is set to True when a timeout occurred.

We recommend developers to start using the improved Event API now. Please don’t forget to update your packaging
requirements to use ClusterShell 1.8 or later.

Task and standard input (stdin)

Task.shell() and Task.run() have a new stdin boolean argument which if set to False prevents the use
of stdin by sending EOF at first read, like if it is connected to /dev/null.

If not specified, its value is managed by the Library Defaults. Its default value in Defaults is set to True for
backward compatibility, but could change in a future major release.

If your program doesn’t plan to listen to stdin, it is recommended to set stdin=False when calling these two
methods.

Packaging changes

We recommend that package maintainers use separate subpackages for Python 2 and Python 3, to install ClusterShell
modules and related command line tools. The Python 2 and Python 3 stacks should be fully installable in parallel.

For the RPM packaging, there is now two subpackages python2-clustershell and
python3-clustershell (or python34-clustershell in EPEL), each providing the library and
tools for the corresponding version of Python.

The clustershell package includes the common configuration files and documentation and requires
python2-clustershell, mainly because Python 2 is still the default interpreter on most operating systems.

vim-clustershell was confusing so we removed it and added the vim extensions to the main clustershell
subpackage.

Version 1.8 should be readily available as RPMs in the following distributions or RPM repositories:

• EPEL 6 and 7

• Fedora 26 and 27

• openSUSE Factory and Leap

On a supported environment, you can expect a smooth upgrade from version 1.6+.

We also expect the packaging to be updated for Debian.

2.1. Version 1.8 7

ClusterShell Documentation, Release 1.8

Version 1.7

It’s just a small version bump from the well-known 1.6 version, but ClusterShell 1.7 comes with some nice new features
that we hope you’ll enjoy! Most of these features have already been tested on some very large Linux production
systems.

Version 1.7 and possible future minor versions 1.7.x are compatible with Python 2.4 up to Python 2.7 (for example:
from RedHat EL5 to EL7). Upgrade from version 1.6 to 1.7 should be painless and is fully supported.

Version 1.7.3

This update contains a few bug fixes and some interesting performance improvements. This is also the first release
published under the GNU Lesser General Public License, version 2.1 or later (LGPL v2.1+). Previous releases were
published under the CeCILL-C V1.

Quite a bit of work has been done on the fanout of processes that the library uses to execute commands. We impleme-
nented a basic per-worker fanout to fix the broken behaviour in tree mode. Thanks to this, it is now possible to use
fanout=1 with gateways. The documentation has also been clarified.

An issue that led to broken pipe errors but also affected performance has been fixed in tree mode when copying files.

An issue with clush -L where nodes weren’t always properly sorted has been fixed.

The performance of MsgTree, the class used by the library to aggregate identical command outputs, has been im-
proved. We have seen up to 75% speed improvement in some cases.

Finally, a cluset command has been added to avoid a conflict with xCAT nodeset command. It is the same command
as nodeset.

For more details, please have a look at GitHub Issues for 1.7.3 milestone.

ClusterShell 1.7.3 is compatible with Python 2.4 up to Python 2.7 (for example: from RedHat EL5 to EL7). Upgrades
from versions 1.6 or 1.7 are supported.

Version 1.7.2

This minor version fixes a defect in tree mode that led to broken pipe errors or unwanted backtraces.

The NodeSet class now supports the empty string as input. In practice, you may now safely reuse the output of a
nodeset command as input argument for another nodeset command, even if the result is an empty string.

A new option --pick is available for clush and nodeset to pick N node(s) at random from the resulting node set.

For more details, please have a look at GitHub Issues for 1.7.2 milestone.

ClusterShell 1.7.2 is compatible with Python 2.4 up to Python 2.7 (for example: from RedHat EL5 to EL7). Upgrades
from versions 1.6 or 1.7 are supported.

Version 1.7.1

This minor version contains a few bug fixes, mostly related to Node sets handling.

This version also contains bug fixes and performance improvements in tree propagation mode.

For more details, please have a look at GitHub Issues for 1.7.1 milestone.

ClusterShell 1.7.1 is compatible with Python 2.4 up to Python 2.7 (for example: from RedHat EL5 to EL7). Upgrades
from versions 1.6 or 1.7 are supported.

8 Chapter 2. Release Notes

https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html
http://www.cecill.info/licences/Licence_CeCILL-C_V1-en.html
https://xcat.org/
https://github.com/cea-hpc/clustershell/issues?utf8=%E2%9C%93&q=is%3Aissue+milestone%3A1.7.3
https://github.com/cea-hpc/clustershell/issues?utf8=%E2%9C%93&q=is%3Aissue+milestone%3A1.7.2
https://github.com/cea-hpc/clustershell/issues?utf8=%E2%9C%93&q=is%3Aissue+milestone%3A1.7.1

ClusterShell Documentation, Release 1.8

Main changes in 1.7

This new version comes with a refreshed documentation, based on the Sphinx documentation generator, available on
http://clustershell.readthedocs.org.

The main new features of version 1.7 are described below.

Multidimensional nodesets

The NodeSet class and nodeset command-line have been improved to support multidimentional node sets with
folding capability. The use of nD naming scheme is sometimes used to map node names to physical location like
name-<rack>-<position> or node position within the cluster interconnect network topology.

A first example of 3D nodeset expansion is a good way to start:

$ nodeset -e gpu-[1,3]-[4-5]-[0-6/2]
gpu-1-4-0 gpu-1-4-2 gpu-1-4-4 gpu-1-4-6 gpu-1-5-0 gpu-1-5-2 gpu-1-5-4
gpu-1-5-6 gpu-3-4-0 gpu-3-4-2 gpu-3-4-4 gpu-3-4-6 gpu-3-5-0 gpu-3-5-2
gpu-3-5-4 gpu-3-5-6

You’ve probably noticed the /2 notation of the last dimension. It’s called a step and behaves as one would expect, and
is fully supported with nD nodesets.

All other nodeset commands and options are supported with nD nodesets. For example, it’s always useful to have a
quick way to count the number of nodes in a nodeset:

$ nodeset -c gpu-[1,3]-[4-5]-[0-6/2]
16

Then to show the most interesting new capability of the underlying NodeSet class in version 1.7, a folding example
is probably appropriate:

$ nodeset -f compute-1-[1-34] compute-2-[1-34]
compute-[1-2]-[1-34]

In the above example, nodeset will try to find a very compact nodesets representation whenever possible. ClusterShell
is probably the first and only cluster tool capable of doing such complex nodeset folding.

Attention, as not all cluster tools are supporting this kind of complex nodesets, even for nodeset expansion, we added
an --axis option to select to fold along some desired dimension:

$ nodeset --axis 2 -f compute-[1-2]-[1-34]
compute-1-[1-34],compute-2-[1-34]

The last dimension can also be selected using -1:

$ nodeset --axis -1 -f compute-[1-2]-[1-34]
compute-1-[1-34],compute-2-[1-34]

All set-like operations are also supported with several dimensions, for example difference (-x):

$ nodeset -f c-[1-10]-[1-44] -x c-[5-10]-[1-34]
c-[1-4]-[1-44],c-[5-10]-[35-44]

Hard to follow? Don’t worry, ClusterShell does it for you!

2.2. Version 1.7 9

http://clustershell.readthedocs.org

ClusterShell Documentation, Release 1.8

File-based node groups

Cluster node groups have been a great success of previous version of ClusterShell and are now widely adopted. So we
worked on improving it even more for version 1.7.

For those of you who use the file /etc/clustershell/group to describe node groups, that is still supported in
1.7 and upgrade from your 1.6 setup should work just fine. However, for new 1.7 installations, we have put this file in
a different location by default:

$ vim /etc/clustershell/groups.d/local.cfg

Especially if you’re starting a new setup, you have also the choice to switch to a more advanced groups YAML
configuration file that can define multiple sources in a single file (equivalent to separate namespaces for node groups).
The YAML format possibly allows you to edit the file content with YAML tools but it’s also a file format convenient
to edit just using the vim editor. To enable the example file, you need to rename it first as it needs to have the .yaml
extension:

$ cd /etc/clustershell/groups.d
$ mv cluster.yaml.example cluster.yaml

You can make the first dictionary found on this file (named roles) to be the default source by changing default:
local to default: roles in /etc/clustershell/groups.conf (main config file for groups).

For more info about the YAML group files, please see File-based group sources.

Please also see node groups configuration for node groups configuration in general.

nodeset -L/–list-all option

Additionally, the nodeset command also has a new option -L or --list-all to list groups from all sources (-l
only lists groups from the default source). This can be useful when configuring ClusterShell and/or troubleshooting
node group sources:

$ nodeset -LL
@adm example0
@all example[2,4-5,32-159]
@compute example[32-159]
@gpu example[156-159]
@io example[2,4-5]
@racks:new example[4-5,156-159]
@racks:old example[0,2,32-159]
@racks:rack1 example[0,2]
@racks:rack2 example[4-5]
@racks:rack3 example[32-159]
@racks:rack4 example[156-159]
@cpu:hsw example[64-159]
@cpu:ivy example[32-63]

Special group @*

The special group syntax @* (or @source:* if using explicit source selection) has been added and can be used
in configuration files or with command line tools. This special group is always available for file-based node groups
(return the content of the all group, or all groups from the source otherwise). For external sources, it is available when
either the all upcall is defined or both map and list upcalls are defined. The all special group is also used by clush
-a and nodeset -a. For example, the two following commands are equivalent:

10 Chapter 2. Release Notes

ClusterShell Documentation, Release 1.8

$ nodeset -a -f
example[2,4-5,32-159]

$ nodeset -f @*
example[2,4-5,32-159]

Exec worker

Version 1.7 introduces a new generic execution worker named ExecWorker as the new base class for most exec()-
based worker classes. In practice with clush, you can now specify the worker in command line using --worker or
-R and use exec. It also supports special placeholders for the node (%h) or rank (%n). For example, the following
command will execute ping commands in parallel, each with a different host from hosts cs01, etc. to cs05 as argument
and then aggregate the results:

$ clush -R exec -w cs[01-05] -bL 'ping -c1 %h >/dev/null && echo ok'
cs[01-04]: ok
clush: cs05: exited with exit code 1

This feature allows the system administrator to use non cluster-aware tools in a more efficient way. You may also want
to explicitly set the fanout (using -f) to limit the number of parallel local commands launched.

Please see also clush worker selection.

Rsh worker

Version 1.7 adds support for rsh or any of its variants like krsh or mrsh. rsh and ssh also share a lot of common
mechanisms. Worker Rsh was added moving a lot of Worker Ssh code into it.

For clush, please see clush worker selection to enable rsh.

To use rsh by default instead of ssh at the library level, install the provided example file named defaults.
conf-rsh to /etc/clustershell/defaults.conf.

Tree Propagation Mode

The ClusterShell Tree Mode allows you to send commands to target nodes through a set of predefined gateways (using
ssh by default). It can be useful to access servers that are behind some other servers like bastion hosts, or to scale on
very large clusters when the flat mode (eg. sliding window of ssh commands) is not enough anymore.

The tree mode is now documented, it has been improved and is enabled by default when a topology.conf file is
found. While it is still a work in progress, the tree mode is known to work pretty well when all gateways are online.
We’ll continue to improve it and make it more robust in the next versions.

Configuration files

When $XDG_CONFIG_HOME is defined, ClusterShell will use it to search for additional configuration files.

PIP user installation support

ClusterShell 1.7 is now fully compatible with PIP and supports user configuration files:

2.2. Version 1.7 11

ClusterShell Documentation, Release 1.8

$ pip install --user clustershell

Please see Installing ClusterShell as user using PIP.

12 Chapter 2. Release Notes

CHAPTER 3

Installation

ClusterShell is distributed in several packages. On RedHat-like OS, we recommend to use the RPM package (.rpm)
distribution.

As a system software for cluster, ClusterShell is primarily made for system-wide installation to be used by system
administrators. However, changes have been made so that it’s now easy to install it without root access (see Installing
ClusterShell as user using PIP).

Requirements

ClusterShell should work with any Unix1 operating systems which provides Python 2.6, 2.7 or 3.x and OpenSSH or
any compatible Secure Shell clients.

Furthermore, ClusterShell’s engine has been optimized when the poll() syscall is available or even better, when the
epoll_wait() syscall is available (Linux only).

For instance, ClusterShell is known to work on the following operating systems:

• GNU/Linux RHEL or CentOS 6 (Python 2.6)

• GNU/Linux RHEL or CentOS 7 (Python 2.7)

• GNU/Linux Fedora 22 to 26 (Python 2.6 or 2.7)

• GNU/Linux Debian wheezy and above (Python 2.7)

• Mac OS X 10.8+ (Python 2.6 or 2.7)

Distribution

ClusterShell is an open-source project distributed under the GNU Lesser General Public License version or later
(LGPL v2.1+), which means that many possibilities are offered to the end user. Also, as a software library, ClusterShell

1 Unix in the same sense of the Availability: Unix notes in the Python documentation

13

https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html

ClusterShell Documentation, Release 1.8

should remain easily available to everyone. Hopefully, packages are currently available for Fedora Linux, RHEL
(through EPEL repositories), Debian and Arch Linux.

Fedora

At the time of writing, ClusterShell 1.8 is available on Fedora 26 (releases being maintained by the Fedora Project).

Install ClusterShell from Fedora Updates

ClusterShell is part of Fedora, so it is really easy to install it with dnf, although you have to keep the Fedora updates
default repository. The following command checks whether the packages are available on a Fedora system:

$ dnf list *clustershell
Available Packages
clustershell.noarch 1.8-1.fc26 fedora
python2-clustershell.noarch 1.8-1.fc26 fedora
python3-clustershell.noarch 1.8-1.fc26 fedora

Then, install ClusterShell’s library module and tools using the following command:

$ dnf install clustershell

Python 2 module and tools are installed by default. If interested in Python 3 development, simply install the additional
ClusterShell’s Python 3 subpackage using the following command:

$ dnf install python3-clustershell

Python 3 versions of the tools are installed as tool-pythonversion, like clush-3.6, cluset-3.6 or nodeset-3.
6 on Fedora 26.

Install ClusterShell from Fedora Updates Testing

Recent releases of ClusterShell are first available through the Test Updates repository of Fedora, then it is later pushed
to the stable updates repository. The following dnf command will also checks for packages availability in the updates-
testing repository:

$ dnf list *clustershell --enablerepo=updates-testing

To install, also add the --enablerepo=updates-testing option, for instance:

$ dnf install clustershell --enablerepo=updates-testing

Red Hat Enterprise Linux (and CentOS)

ClusterShell packages are maintained on Extra Packages for Enterprise Linux EPEL for Red Hat Enterprise Linux
(RHEL) and its compatible spinoffs such as CentOS. At the time of writing, ClusterShell 1.8 is available on EPEL 6
and 7.

14 Chapter 3. Installation

http://fedoraproject.org/wiki/QA/Updates_Testing
http://fedoraproject.org/wiki/EPEL

ClusterShell Documentation, Release 1.8

Install ClusterShell from EPEL

First you have to enable the yum EPEL repository. We recommend to download and install the EPEL repository RPM
package. On CentOS, this can be easily done using the following command:

$ yum --enablerepo=extras install epel-release

Then, the ClusterShell installation procedure is quite the same as for Fedora Updates, for instance:

$ yum install clustershell

Python 2 module and tools are installed by default. If interested in Python 3 development, simply install the additional
ClusterShell’s Python 3 subpackage using the following command:

$ yum install python34-clustershell

Note: The Python 3 subpackage is named python34-clustershell on EPEL 6 and 7, instead of
python3-clustershell.

Python 3 versions of the tools are installed as tool-pythonversion, like clush-3.4, cluset-3.4 or nodeset-3.
4 on EPEL 6 and 7.

openSUSE

ClusterShell is available in openSUSE Tumbleweed (since 2017):

$ zypper search clustershell
Loading repository data...
Reading installed packages...

S | Name | Summary |
→˓Type
--+----------------------+---+----
→˓----
| clustershell | Python framework for efficient cluster administration |

→˓package
| python2-clustershell | ClusterShell module for Python 2 |

→˓package
| python3-clustershell | ClusterShell module for Python 3 |

→˓package

To install ClusterShell on openSUSE Tumbleweed (Factory), use:

$ zypper install clustershell

Python 2 module and tools are installed by default. If interested in Python 3 development, simply install the additional
ClusterShell’s Python 3 subpackage using the following command:

$ zypper install python3-clustershell

Python 3 versions of the tools are installed as tool-pythonversion, like clush-3.6, cluset-3.6 or nodeset-3.
6.

3.2. Distribution 15

http://fedoraproject.org/wiki/EPEL

ClusterShell Documentation, Release 1.8

Debian

ClusterShell is available in Debian main repository (since 2011).

To install it on Debian, simply use:

$ apt-get install clustershell

You can get the latest version on:

* http://packages.debian.org/sid/clustershell

Ubuntu

Like Debian, it is easy to get and install ClusterShell on Ubuntu (also with apt-get). To do so, please first enable
the universe repository. ClusterShell is available since “Natty” release (11.04):

• http://packages.ubuntu.com/clustershell

Installing ClusterShell using PIP

Installing ClusterShell as root using PIP

To install ClusterShell as a standard Python package using PIP2 as root:

$ pip install ClusterShell

Or alternatively, using the source tarball:

$ pip install ClusterShell-1.x.tar.gz

Installing ClusterShell as user using PIP

To install ClusterShell as a standard Python package using PIP as an user:

$ pip install --user ClusterShell

Or alternatively, using the source tarball:

$ pip install --user ClusterShell-1.x.tar.gz

Then, you just need to update your PYTHONPATH environment variable to be able to import the library and PATH to
easily use the Tools:

$ export PYTHONPATH=$PYTHONPATH:~/.local/lib
$ export PATH=$PATH:~/.local/bin

Configuration files are installed in ~/.local/etc/clustershell and are automatically loaded before system-
wide ones (for more info about supported user config files, please see the clush or Node groups config sections).

2 pip is a tool for installing and managing Python packages, such as those found in the Python Package Index

16 Chapter 3. Installation

http://packages.ubuntu.com/clustershell

ClusterShell Documentation, Release 1.8

Source

Current source is available through Git, use the following command to retrieve the latest development version from
the repository:

$ git clone git@github.com:cea-hpc/clustershell.git

3.3. Source 17

ClusterShell Documentation, Release 1.8

18 Chapter 3. Installation

CHAPTER 4

Configuration

clush

The following configuration file defines system-wide default values for several clush tool parameters:

/etc/clustershell/clush.conf

clush settings might then be overridden per user if one of the following files is found, in priority order:

$XDG_CONFIG_HOME/clustershell/clush.conf
$HOME/.config/clustershell/clush.conf (only if $XDG_CONFIG_HOME is not defined)
$HOME/.local/etc/clustershell/clush.conf
$HOME/.clush.conf (deprecated, for 1.6 compatibility only)

The following table describes available clush config file settings.

19

ClusterShell Documentation, Release 1.8

Key Value
fanout Size of the sliding window of ssh(1) connectors.
con-
nect_timeout

Timeout in seconds to allow a connection to establish. This parameter is passed to ssh(1). If set to 0,
no timeout occurs.

com-
mand_timeout

Timeout in seconds to allow a command to complete since the connection has been established.
This parameter is passed to ssh(1). In addition, the ClusterShell library ensures that any commands
complete in less than (connect_timeout + command_timeout). If set to 0, no timeout occurs.

color Whether to use ANSI colors to surround node or nodeset prefix/header with escape sequences to
display them in color on the terminal. Valid arguments are never, always or auto (which use color if
standard output/error refer to a terminal). Colors are set to [34m (blue foreground text) for stdout
and [31m (red foreground text) for stderr, and cannot be modified.

fd_max Maximum number of open file descriptors permitted per clush process (soft resource limit for open
files). This limit can never exceed the system (hard) limit. The fd_max (soft) and system (hard)
limits should be high enough to run clush, although their values depend on your fanout value.

his-
tory_size

Set the maximum number of history entries saved in the GNU readline history list. Negative values
imply unlimited history file size.

node_count Should clush display additional (node count) information in buffer header? (yes/no)
verbosity Set the verbosity level: 0 (quiet), 1 (default), 2 (verbose) or more (debug).
ssh_user Set the ssh(1) user to use for remote connection (default is to not specify).
ssh_path Set the ssh(1) binary path to use for remote connection (default is ssh).
ssh_options Set additional (raw) options to pass to the underlying ssh(1) command.
scp_path Set the scp(1) binary path to use for remote copy (default is scp).
scp_options Set additional options to pass to the underlying scp(1) command. If not specified, ssh_options are

used instead.
rsh_path Set the rsh(1) binary path to use for remote connection (default is rsh). You could easily use mrsh or

krsh by simply changing this value.
rcp_path Same as rsh_path but for rcp command (default is rcp).
rsh_options Set additional options to pass to the underlying rsh/rcp command.

Node groups

ClusterShell defines a node group syntax to represent a collection of nodes. This is a convenient way to manipulate
node sets, especially in HPC (High Performance Computing) or with large server farms. This section explains how to
configure node group sources. Please see also nodeset node groups for specific usage examples.

groups.conf

ClusterShell loads groups.conf configuration files that define how to obtain node groups configuration, ie. the way the
library should access file-based or external node group sources.

The following configuration file defines system-wide default values for groups.conf :

/etc/clustershell/groups.conf

groups.conf settings might then be overridden per user if one of the following files is found, in priority order:

$XDG_CONFIG_HOME/clustershell/groups.conf
$HOME/.config/clustershell/groups.conf (only if $XDG_CONFIG_HOME is not defined)
$HOME/.local/etc/clustershell/groups.conf

This makes possible for an user to have its own node groups configuration. If no readable configuration file is found,
group support will be disabled but other node set operations will still work.

20 Chapter 4. Configuration

ClusterShell Documentation, Release 1.8

groups.conf defines configuration sub-directories, but may also define source definitions by itself. These sources
provide external calls that are detailed in External group sources.

The following example shows the content of a groups.conf file where node groups are bound to the source named
genders by default:

[Main]
default: genders
confdir: /etc/clustershell/groups.conf.d $CFGDIR/groups.conf.d
autodir: /etc/clustershell/groups.d $CFGDIR/groups.d

[genders]
map: nodeattr -n $GROUP
all: nodeattr -n ALL
list: nodeattr -l

[slurm]
map: sinfo -h -o "%N" -p $GROUP
all: sinfo -h -o "%N"
list: sinfo -h -o "%P"
reverse: sinfo -h -N -o "%P" -n $NODE

The groups.conf files are parsed with Python’s ConfigParser:

• The first section whose name is Main accepts the following keywords:

– default defines a default node group source (eg. by referencing a valid section header)

– confdir defines an optional list of directory paths where the ClusterShell library should look for .conf files
which define group sources to use. Each file in these directories with the .conf suffix should contain one
or more node group source sections as documented below. These will be merged with the group sources
defined in the main groups.conf to form the complete set of group sources to use. Duplicate group source
sections are not allowed in those files. Configuration files that are not readable by the current user are
ignored (except the one that defines the default group source). The variable $CFGDIR is replaced by the
path of the highest priority configuration directory found (where groups.conf resides). The default confdir
value enables both system-wide and any installed user configuration (thanks to $CFGDIR). Duplicate
directory paths are ignored.

– autodir defines an optional list of directories where the ClusterShell library should look for .yaml files that
define in-file group dictionaries. No need to call external commands for these files, they are parsed by the
ClusterShell library itself. Multiple group source definitions in the same file is supported. The variable
$CFGDIR is replaced by the path of the highest priority configuration directory found (where groups.conf
resides). The default confdir value enables both system-wide and any installed user configuration (thanks
to $CFGDIR). Duplicate directory paths are ignored.

• Each following section (genders, slurm) defines a group source. The map, all, list and reverse upcalls are
explained below in Group source upcalls.

File-based group sources

Version 1.7 introduces support for native handling of flat files with different group sources to avoid the use of external
upcalls for such static configuration. This can be achieved through the autodir feature and YAML files described
below.

4.2. Node groups 21

http://docs.python.org/library/configparser.html

ClusterShell Documentation, Release 1.8

YAML group files

Cluster node groups can be defined in straightforward YAML files. In such a file, each YAML dictionary defines group
to nodes mapping. Different dictionaries are handled as different group sources.

For compatibility reasons with previous versions of ClusterShell, this is not the default way to define node groups yet.
So here are the steps needed to try this out:

Rename the following file:

/etc/clustershell/groups.d/cluster.yaml.example

to a file having the .yaml extension, for example:

/etc/clustershell/groups.d/cluster.yaml

Ensure that autodir is set in groups.conf :

autodir: /etc/clustershell/groups.d $CFGDIR/groups.d

In the following example, we also changed the default group source to roles in groups.conf (the first dictionary defined
in the example), so that @roles:groupname can just be shorted @groupname.

Here is an example of /etc/clustershell/groups.d/cluster.yaml:

roles:
adm: 'mgmt[1-2]' # define groups @roles:adm and @adm
login: 'login[1-2]'
compute: 'node[0001-0288]'
gpu: 'node[0001-0008]'

cpu_only: '@compute!@gpu' # example of inline set operation
define group @cpu_only with node[0009-0288]

storage: '@lustre:mds,@lustre:oss' # example of external source reference

all: '@login,@compute,@storage' # special group used for clush/nodeset -a
only needed if not including all groups

lustre:
mds: 'mds[1-4]'
oss: 'oss[0-15]'
rbh: 'rbh[1-2]'

Testing the syntax of your group file can be quickly performed through the -L or --list-all command of nodeset:

$ nodeset -LL
@adm mgmt[1-2]
@all login[1-2],mds[1-4],node[0001-0288],oss[0-15],rbh[1-2]
@compute node[0001-0288]
@cpu_only node[0009-0288]
@gpu node[0001-0008]
@login login[1-2]
@storage mds[1-4],oss[0-15],rbh[1-2]
@sysgrp sysgrp[1-4]
@lustre:mds mds[1-4]
@lustre:oss oss[0-15]
@lustre:rbh rbh[1-2]

22 Chapter 4. Configuration

ClusterShell Documentation, Release 1.8

External group sources

Group source upcalls

Each node group source is defined by a section name (source name) and up to four upcalls:

• map: External shell command used to resolve a group name into a node set, list of nodes or list of node sets
(separated by space characters or by carriage returns). The variable $GROUP is replaced before executing the
command.

• all: Optional external shell command that should return a node set, list of nodes or list of node sets of all nodes
for this group source. If not specified, the library will try to resolve all nodes by using the list external command
in the same group source followed by map for each available group. The notion of all nodes is used by clush
-a and also by the special group name @* (or @source:*).

• list: Optional external shell command that should return the list of all groups for this group source (separated
by space characters or by carriage returns). If this upcall is not specified, ClusterShell won’t be able to list any
available groups (eg. with nodeset -l), so it is highly recommended to set it.

• reverse: Optional external shell command used to find the group(s) of a single node. The variable $NODE is
previously replaced. If this external call is not specified, the reverse operation is computed in memory by the
library from the list and map external calls, if available. Also, if the number of nodes to reverse is greater than
the number of available groups, the reverse external command is avoided automatically to reduce resolution
time.

In addition to context-dependent $GROUP and $NODE variables described above, the two following variables are
always available and also replaced before executing shell commands:

• $CFGDIR is replaced by groups.conf base directory path

• $SOURCE is replaced by current source name (see an usage example just below)

Caching considerations

External command results are cached in memory, for a limited amount of time, to avoid multiple similar calls.

The optional parameter cache_time, when specified within a group source section, defines the number of seconds
each upcall result is kept in cache, in memory only. Please note that caching is actually only useful for long-running
programs (like daemons) that are using node groups, not for one-shot commands like clush or cluset/nodeset.

The default value of cache_time is 3600 seconds.

Multiple sources section

Use a comma-separated list of source names in the section header if you want to define multiple group sources with
similar upcall commands. The special variable $SOURCE is always replaced by the source name before command
execution (here cluster, racks and cpu), for example:

[cluster,racks,cpu]
map: get_nodes_from_source.sh $SOURCE $GROUP
all: get_all_nodes_from_source.sh $SOURCE
list: list_nodes_from_source.sh $SOURCE

is equivalent to:

4.2. Node groups 23

ClusterShell Documentation, Release 1.8

[cluster]
map: get_nodes_from_source.sh cluster $GROUP
all: get_all_nodes_from_source.sh cluster
list: list_nodes_from_source.sh cluster

[racks]
map: get_nodes_from_source.sh racks $GROUP
all: get_all_nodes_from_source.sh racks
list: list_nodes_from_source.sh racks

[cpu]
map: get_nodes_from_source.sh cpu $GROUP
all: get_all_nodes_from_source.sh cpu
list: list_nodes_from_source.sh cpu

Return code of external calls

Each external command might return a non-zero return code when the operation is not doable. But if the call return
zero, for instance, for a non-existing group, the user will not receive any error when trying to resolve such unknown
group. The desired behavior is up to the system administrator.

Slurm bindings (example)

Enable Slurm node group bindings by renaming the example configuration file usually installed as /etc/
clustershell/groups.conf.d/slurm.conf.example to slurm.conf. Three group sources are de-
fined in this file and are detailed below. Each section comes with a long and short names (for convenience), but
actually defines a same group source.

While examples below are based on the nodeset tool, all Python tools using ClusterShell and the NodeSet class will
automatically benefit from these additional node groups.

The first section slurmpart,sp defines a group source based on Slurm partitions. Each group is named after the
partition name and contains the partition’s nodes:

[slurmpart,sp]
map: sinfo -h -o "%N" -p $GROUP
all: sinfo -h -o "%N"
list: sinfo -h -o "%R"
reverse: sinfo -h -N -o "%R" -n $NODE

Example of use with nodeset on a cluster having two Slurm partitions named kepler and pascal:

$ nodeset -s sp -ll
@sp:kepler cluster-[0001-0065]
@sp:pascal cluster-[0066-0068]

The second section slurmstate,st defines a group source based on Slurm node states. Each group is based on a different
state name and contains the nodes currently in that state:

[slurmstate,st]
map: sinfo -h -o "%N" -t $GROUP
all: sinfo -h -o "%N"
list: sinfo -h -o "%T" | tr -d '*~#$@+'
reverse: sinfo -h -N -o "%T" -n $NODE | tr -d '*~#$@+'
cache_time: 60

24 Chapter 4. Configuration

ClusterShell Documentation, Release 1.8

Here, cache_time is set to 60 seconds instead of the default (3600s) to avoid caching results in memory for too long,
in case of state change (this is only useful for long-running processes, not one-shot commands).

Example of use with nodeset to get the current nodes that are in the Slurm state drained:

$ nodeset -f @st:drained
cluster-[0058,0067]

The third section slurmjob,sj defines a group source based on Slurm jobs. Each group is based on a running job ID
and contains the nodes currently allocated for this job:

[slurmjob,sj]
map: squeue -h -j $GROUP -o "%N"
list: squeue -h -o "%i" -t R
reverse: squeue -h -w $NODE -o "%i"
cache_time: 60

cache_time is also set to 60 seconds instead of the default (3600s) to avoid caching results in memory for too long,
because this group source is likely very dynamic (this is only useful for long-running processes, not one-shot com-
mands).

You can then easily find nodes associated with a Slurm job ID:

$ nodeset -f @sj:686518
cluster-[0003,0005,0010,0012,0015,0017,0021,0055]

Library Defaults

Warning: Modifying library defaults is for advanced users only as that could change the behavior of tools using
ClusterShell. Moreover, tools are free to enforce their own defaults, so changing library defaults may not change a
global behavior as expected.

Since version 1.7, most defaults of the ClusterShell library may be overridden in defaults.conf.

The following configuration file defines ClusterShell system-wide defaults:

/etc/clustershell/defaults.conf

defaults.conf settings might then be overridden per user if one of the following files is found, in priority order:

$XDG_CONFIG_HOME/clustershell/defaults.conf
$HOME/.config/clustershell/defaults.conf (only if $XDG_CONFIG_HOME is not defined)
$HOME/.local/etc/clustershell/defaults.conf

4.3. Library Defaults 25

ClusterShell Documentation, Release 1.8

26 Chapter 4. Configuration

CHAPTER 5

Tools

Three Python scripts using the ClusterShell library are provided with the distribution:

• cluset or nodeset, both are the same tool to manage cluster node sets and groups,

• clush, a powerful parallel command execution tool with output gathering,

• clubak, a tool to gather and display results from clush/pdsh-like output (and more).

nodeset

The nodeset command enables easy manipulation of node sets, as well as node groups, at the command line level. As
it is very user-friendly and efficient, the nodeset command can quickly improve traditional cluster shell scripts. It is
also full-featured as it provides most of the NodeSet and RangeSet class methods (see also NodeSet class, and
RangeSet class).

Most of the examples in this section are using simple indexed node sets, however, nodeset supports multidimensional
node sets, like dc[1-2]n[1-99], introduced in version 1.7 (see RangeSetND class for more info).

This section will guide you through the basics and also more advanced features of nodeset.

Usage basics

One exclusive command must be specified to nodeset, for example:

$ nodeset --expand node[13-15,17-19]
node13 node14 node15 node17 node18 node19

$ nodeset --count node[13-15,17-19]
6

$ nodeset --fold node1-ipmi node2-ipmi node3-ipmi
node[1-3]-ipmi

27

ClusterShell Documentation, Release 1.8

Commands with inputs

Some nodeset commands require input (eg. node names, node sets or node groups), and some only give output. The
following table shows commands that require some input:

Com-
mand

Description

-c,
--count

Count and display the total number of nodes in node sets or/and node groups.

-e,
--expand

Expand node sets or/and node groups as unitary node names separated by current separator string
(see --separator option described in Output result formatting).

-f,
--fold

Fold (compact) node sets or/and node groups into one set of nodes (by previously resolving any
groups). The resulting node set is guaranteed to be free from node --regroup below if you want
to resolve node groups in result). Please note that folding may be time consuming for
multidimensional node sets.

-r,
--regroup

Fold (compact) node sets or/and node groups into one set of nodes using node groups whenever
possible (by previously resolving any groups). See Node groups.

There are three ways to give some input to the nodeset command:

• from command line arguments,

• from standard input (enabled when no arguments are found on command line),

• from both command line and standard input, by using the dash special argument “-“ meaning you need to use
stdin instead.

The following example illustrates the three ways to feed nodeset:

$ nodeset -f node1 node6 node7
node[1,6-7]

$ echo node1 node6 node7 | nodeset -f
node[1,6-7]

$ echo node1 node6 node7 | nodeset -f node0 -
node[0-1,6-7]

Furthermore, nodeset‘s standard input reader is able to process multiple lines and multiple node sets or groups per
line. The following example shows a simple use case:

$ mount -t nfs | cut -d':' -f1
nfsserv1
nfsserv2
nfsserv3

$ mount -t nfs | cut -d':' -f1 | nodeset -f
nfsserv[1-3]

Other usage examples of nodeset below show how it can be useful to provide node sets from standard input (sinfo is a
SLURM1 command to view nodes and partitions information and sacct is a command to display SLURM accounting
data):

$ sinfo -p cuda -o '%N' -h
node[156-159]

$ sinfo -p cuda -o '%N' -h | nodeset -e

1 SLURM is an open-source resource manager (https://computing.llnl.gov/linux/slurm/)

28 Chapter 5. Tools

https://computing.llnl.gov/linux/slurm/

ClusterShell Documentation, Release 1.8

node156 node157 node158 node159

$ for node in $(sinfo -p cuda -o '%N' -h | nodeset -e); do
sacct -a -N $node > /tmp/cudajobs.$node;

done

Previous rules also apply when working with node groups, for example when using nodeset -r reading from
standard input (and a matching group is found):

$ nodeset -f @gpu
node[156-159]

$ sinfo -p cuda -o '%N' -h | nodeset -r
@gpu

Most commands described in this section produce output results that may be formatted using --output-format
and --separator which are described in Output result formatting.

Commands with no input

The following table shows all other commands that are supported by nodeset. These commands don’t support any
input (like node sets), but can still recognize options as specified below.

Command
w/o input

Description

-l,
--list

List node groups from selected group source as specified with -s or --groupsource. If not
specified, node groups from the default group source are listed (see groups configuration for
default group source configuration).

--groupsourcesList all configured group sources, one per line, as configured in groups.conf (see groups
configuration). The default group source is appended with ‘‘ (default)‘‘, unless the -q, --quiet
option is specified. This command is mainly here to avoid reading any configuration files, or to
check if all work fine when configuring group sources.

Output result formatting

When using the expand command (-e, --expand), a separator string is used when displaying results. The option
-S, --separator allows you to modify it. The specified string is interpreted, so that you can use special characters
as separator, like \n or \t. The default separator is the space character ” “. This is an example showing such separator
string change:

$ nodeset -e --separator='\n' node[0-3]
node0
node1
node2
node3

The -O, --output-format option can be used to format output results of most nodeset commands. The string
passed to this option is used as a base format pattern applied to each node or each result (depending on the command
and other options requested). The default format string is “%s”. Formatting is performed using the Python builtin
string formatting operator, so you must use one format operator of the right type (%s is guaranteed to work in all
cases). Here is an output formatting example when using the expand command:

$ nodeset --output-format='%s-ipmi' -e node[1-2]x[1-2]
node1x1-ipmi node1x2-ipmi node2x1-ipmi node2x2-ipmi

5.1. nodeset 29

ClusterShell Documentation, Release 1.8

Output formatting and separator combined can be useful when using the expand command, as shown here:

$ nodeset -O '%s-ipmi' -S '\n' -e node[1-2]x[1-2]
node1x1-ipmi
node1x2-ipmi
node2x1-ipmi
node2x2-ipmi

When using the output formatting option along with the folding command, the format is applied to each node but the
result is still folded:

$ nodeset -O '%s-ipmi' -f mgmt1 mgmt2 login[1-4]
login[1-4]-ipmi,mgmt[1-2]-ipmi

Stepping and auto-stepping

The nodeset command, as does the clush command, is able to recognize by default a factorized notation for range sets
of the form a-b/c, indicating a list of integers starting from a, less than or equal to b with the increment (step) c.

For example, the 0-6/2 format indicates a range of 0-6 stepped by 2; that is 0,2,4,6:

$ nodeset -e node[0-6/2]
node0 node2 node4 node6

However, by default, nodeset never uses this stepping notation in output results, as other cluster tools seldom if ever
support this feature. Thus, to enable such factorized output in nodeset, you must specify --autostep=AUTOSTEP
to set an auto step threshold number when folding nodesets (ie. when using -f or -r). This threshold number
(AUTOSTEP) is the minimum occurrence of equally-spaced integers needed to enable auto-stepping.

For example:

$ nodeset -f --autostep=3 node1 node3 node5
node[1-5/2]

$ nodeset -f --autostep=4 node1 node3 node5
node[1,3,5]

It is important to note that resulting node sets with enabled auto-stepping never create overlapping ranges, for example:

$ nodeset -f --autostep=3 node1 node5 node9 node13
node[1-13/4]

$ nodeset -f --autostep=3 node1 node5 node7 node9 node13
node[1,5-9/2,13]

However, any ranges given as input may still overlap (in this case, nodeset will automatically spread them out so that
they do not overlap), for example:

$ nodeset -f --autostep=3 node[1-13/4,7]
node[1,5-9/2,13]

A minimum node count threshold percentage before autostep is enabled may also be specified as autostep value (or
auto which is currently 100%). In the two following examples, only the first 4 of the 7 indexes may be represented
using the step syntax (57% of them):

30 Chapter 5. Tools

ClusterShell Documentation, Release 1.8

$ nodeset -f --autostep=50% node[1,3,5,7,34,39,99]
node[1-7/2,34,39,99]

$ nodeset -f --autostep=90% node[1,3,5,7,34,39,99]
node[1,3,5,7,34,39,99]

Zero-padding

Sometimes, cluster node names are padded with zeros (eg. node007). With nodeset, when leading zeros are used,
resulting host names or node sets are automatically padded with zeros as well. For example:

$ nodeset -e node[08-11]
node08 node09 node10 node11

$ nodeset -f node001 node002 node003 node005
node[001-003,005]

Zero-padding and stepping (as seen in Stepping and auto-stepping) together are also supported, for example:

$ nodeset -e node[000-012/4]
node000 node004 node008 node012

Nevertheless, care should be taken when dealing with padding, as a zero-padded node name has priority over a normal
one, for example:

$ nodeset -f node1 node02
node[01-02]

To clarify, nodeset will always try to coalesce node names by their numerical index first (without taking care of any
zero-padding), and then will use the first zero-padding rule encountered. In the following example, the first zero-
padding rule found is node01‘s one:

$ nodeset -f node01 node002
node[01-02]

That said, you can see it is not possible to mix node01 and node001 in the same node set (not supported by the
NodeSet class), but that would be a tricky case anyway!

Leading and trailing digits

Version 1.7 introduces improved support for bracket leading and trailing digits. Those digits are automatically included
within the range set, allowing all node set operations to be fully supported.

Examples with bracket leading digits:

$ nodeset -f node-00[00-99]
node-[0000-0099]

$ nodeset -f node-01[01,09,42]
node-[0101,0109,0142]

Examples with bracket trailing digits:

5.1. nodeset 31

ClusterShell Documentation, Release 1.8

$ nodeset -f node-[1-2]0-[0-2]5
node-[10,20]-[05,15,25]

Examples with both bracket leading and trailing digits:

$ nodeset -f node-00[1-6]0
node-[0010,0020,0030,0040,0050,0060]

$ nodeset --autostep=auto -f node-00[1-6]0
node-[0010-0060/10]

Still, using this syntax can be error-prone especially if used with node sets without 0-padding or with the /step syntax
and also requires additional processing by the parser. In general, we recommend writing the whole rangeset inside the
brackets.

Warning: Using the step syntax (seen above) within a bracket-delimited range set is not compatible with trailing
digits. For instance, this is not supported: node-00[1-6/2]0

Arithmetic operations

As a preamble to this section, keep in mind that all operations can be repeated/mixed within the same nodeset command
line, they will be processed from left to right.

Union operation

Union is the easiest arithmetic operation supported by nodeset: there is no special command line option for that, just
provide several node sets and the union operation will be computed, for example:

$ nodeset -f node[1-3] node[4-7]
node[1-7]

$ nodeset -f node[1-3] node[2-7] node[5-8]
node[1-8]

Other operations

As an extension to the above, other arithmetic operations are available by using the following command-line options
(working set is the node set currently processed on the command line – always from left to right):

nodeset command option Operation
-x NODESET,
--exclude=NODESET

compute a new set with elements in working set but not in NODESET

-i NODESET,
--intersection=NODESET

compute a new set with elements common to working set and
NODESET

-X NODESET, --xor=NODESET compute a new set with elements that are in exactly one of the working
set and NODESET

If rangeset mode (-R) is turned on, all arithmetic operations are supported by replacing NODESET by any RANGESET.
See Range sets for more info about nodeset‘s rangeset mode.

Arithmetic operations usage examples:

32 Chapter 5. Tools

ClusterShell Documentation, Release 1.8

$ nodeset -f node[1-9] -x node6
node[1-5,7-9]

$ nodeset -f node[1-9] -i node[6-11]
node[6-9]

$ nodeset -f node[1-9] -X node[6-11]
node[1-5,10-11]

$ nodeset -f node[1-9] -x node6 -i node[6-12]
node[7-9]

Extended patterns support

nodeset does also support arithmetic operations through its “extended patterns” (inherited from NodeSet extended
pattern feature, see Extended String Pattern, there is an example of use:

$ nodeset -f node[1-4],node[5-9]
node[1-9]

$ nodeset -f node[1-9]\!node6
node[1-5,7-9]

$ nodeset -f node[1-9]\&node[6-12]
node[6-9]

$ nodeset -f node[1-9]^node[6-11]
node[1-5,10-11]

Special operations

A few special operations are currently available: node set slicing, splitting on a predefined node count, splitting non-
contiguous subsets, choosing fold axis (for multidimensional node sets) and picking N nodes randomly. They are all
explained below.

Slicing

Slicing is a way to select elements from a node set by their index (or from a range set when using -R toggle option, see
Range sets. In this case actually, and because nodeset‘s underlying NodeSet class sorts elements as observed after
folding (for example), the word set may sound like a stretch of language (a set isn’t usually sorted). Indeed, NodeSet
further guarantees that its iterator will traverse the set in order, so we should see it as a ordered set. The following
simple example illustrates this sorting behavior:

$ nodeset -f b2 b1 b0 b c a0 a
a,a0,b,b[0-2],c

Slicing is performed through the following command-line option:

nodeset command option Operation
-I RANGESET,
--slice=RANGESET

slicing: get sliced off result, selecting elements from provided rangeset’s
indexes

Some slicing examples are shown below:

5.1. nodeset 33

ClusterShell Documentation, Release 1.8

$ nodeset -f -I 0 node[4-8]
node4

$ nodeset -f --slice=0 bnode[0-9] anode[0-9]
anode0

$ nodeset -f --slice=1,4,7,9,15 bnode[0-9] anode[0-9]
anode[1,4,7,9],bnode5

$ nodeset -f --slice=0-18/2 bnode[0-9] anode[0-9]
anode[0,2,4,6,8],bnode[0,2,4,6,8]

Splitting into n subsets

Splitting a node set into several parts is often useful to get separate groups of nodes, for instance when you want to
check MPI comm between nodes, etc. Based on NodeSet.split() method, the nodeset command provides the
following additional command-line option (since v1.4):

nodeset command option Operation
--split=MAXSPLIT splitting: split result into a number of subsets

MAXSPLIT is an integer specifying the number of separate groups of nodes to compute. Input’s node set is divided into
smaller groups, whenever possible with the same size (only the last ones may be smaller due to rounding). Obviously,
if MAXSPLIT is higher than or equal to the number N of elements in the set, then the set is split to N single sets.

Some node set splitting examples:

$ nodeset -f --split=4 node[0-7]
node[0-1]
node[2-3]
node[4-5]
node[6-7]

$ nodeset -f --split=4 node[0-6]
node[0-1]
node[2-3]
node[4-5]
node6

$ nodeset -f --split=10000 node[0-4]
foo0
foo1
foo2
foo3
foo4

$ nodeset -f --autostep=3 --split=2 node[0-38/2]
node[0-18/2]
node[20-38/2]

Splitting off non-contiguous subsets

It can be useful to split a node set into several contiguous subsets (with same pattern name and contiguous range
indexes, eg. node[1-100] or dc[1-4]node[1-100]). The --contiguous option allows you to do that. It is based
on NodeSet.contiguous() method, and should be specified with standard commands (fold, expand, count,

34 Chapter 5. Tools

ClusterShell Documentation, Release 1.8

regroup). The following example shows how to split off non-contiguous subsets of a specified node set, and to display
each resulting contiguous node set in a folded manner to separated lines:

$ nodeset -f --contiguous node[1-100,200-300,500]
node[1-100]
node[200-300]
node500

Similarly, the following example shows how to display each resulting contiguous node set in an expanded manner to
separate lines:

$ nodeset -e --contiguous node[1-9,11-19]
node1 node2 node3 node4 node5 node6 node7 node8 node9
node11 node12 node13 node14 node15 node16 node17 node18 node19

Choosing fold axis (nD)

The default folding behavior for multidimensional node sets is to fold along all nD axis. However, other cluster tools
barely support nD nodeset syntax, so it may be useful to fold along one (or a few) axis only. The --axis option
allows you to specify indexes of dimensions to fold. Using this option, rangesets of unspecified axis there won’t be
folded. Please note however that the obtained result may be suboptimal, this is because NodeSet algorithms are
optimized for folding along all axis. --axis value is a set of integers from 1 to n representing selected nD axis, in
the form of a number or a rangeset. A common case is to restrict folding on a single axis, like in the following simple
examples:

$ nodeset --axis=1 -f node1-ib0 node2-ib0 node1-ib1 node2-ib1
node[1-2]-ib0,node[1-2]-ib1

$ nodeset --axis=2 -f node1-ib0 node2-ib0 node1-ib1 node2-ib1
node1-ib[0-1],node2-ib[0-1]

Because a single nodeset may have several different dimensions, axis indices are silently truncated to fall in the allowed
range. Negative indices are useful to fold along the last axis whatever number of dimensions used:

$ nodeset --axis=-1 -f comp-[1-2]-[1-36],login-[1-2]
comp-1-[1-36],comp-2-[1-36],login-[1-2]

Picking N node(s) at random

Use --pick with a maximum number of nodes you wish to pick randomly from the resulting node set (or from the
resulting range set with -R):

$ nodeset --pick=1 -f node11 node12 node13
node12
$ nodeset --pick=2 -f node11 node12 node13
node[11,13]

Node groups

This section tackles the node groups feature available more particularly through the nodeset command-line tool. The
ClusterShell library defines a node groups syntax and allow you to bind these group sources to your applications (cf.
node groups configuration). Having those group sources, group provisioning is easily done through user-defined exter-
nal shell commands. Thus, node groups might be very dynamic and their nodes might change very often. However, for

5.1. nodeset 35

ClusterShell Documentation, Release 1.8

performance reasons, external call results are still cached in memory to avoid duplicate external calls during nodeset
execution. For example, a group source can be bound to a resource manager or a custom cluster database.

For further details about using node groups in Python, please see Node groups. For advanced usage, you should also
be able to define your own group source directly in Python (cf. Overriding default groups configuration).

Node group expression rules

The general node group expression is @source:groupname. For example, @slurm:bigmem represents the group
bigmem of the group source slurm. Moreover, a shortened expression is available when using the default group source
(defined by configuration); for instance @compute represents the compute group of the default group source.

Valid group source names and group names can contain alphanumeric characters, hyphens and underscores (no space
allowed). Indeed, same rules apply to node names.

Listing group sources

As already mentioned, the following nodeset command is available to list configured group sources and also display
the default group source (unless -q is provided):

$ nodeset --groupsources
local (default)
genders
slurm

Listing group names

If the list external shell command is configured (see node groups configuration), it is possible to list available groups
from the default source with the following commands:

$ nodeset -l
@mgnt
@mds
@oss
@login
@compute

Or, to list groups from a specific group source, use -l in conjunction with -s (or –groupsource):

$ nodeset -l -s slurm
@slurm:parallel
@slurm:cuda

Or, to list groups from all available group sources, use -L (or –list-all):

$ nodeset -L
@mgnt
@mds
@oss
@login
@compute
@slurm:parallel
@slurm:cuda

You can also use nodeset -ll or nodeset -LL to see each group’s associated node sets.

36 Chapter 5. Tools

ClusterShell Documentation, Release 1.8

Using node groups in basic commands

The use of node groups with the nodeset command is very straightforward. Indeed, any group name, prefixed by @ as
mentioned above, can be used in lieu of a node name, where it will be substituted for all nodes in that group.

A first, simple example is a group expansion (using default source) with nodeset:

$ nodeset -e @oss
node40 node41 node42 node43 node44 node45

The nodeset count command works as expected:

$ nodeset -c @oss
6

Also nodeset folding command can always resolve node groups:

$ nodeset -f @oss
node[40-45]

There are usually two ways to use a specific group source (need to be properly configured):

$ nodeset -f @slurm:parallel
node[50-81]

$ nodeset -f -s slurm @parallel
node[50-81]

Finding node groups

As an extension to the list command, you can search node groups that a specified node set belongs to with nodeset
-l[ll] as follow:

$ nodeset -l node40
@all
@oss

$ nodeset -ll node40
@all node[1-159]
@oss node[40-45]

This feature is implemented with the help of the NodeSet.groups() method (see Finding node groups for further
details).

Resolving node groups

If needed group configuration conditions are met (cf. node groups configuration), you can try group lookups thanks to
the -r, --regroup command. This feature is implemented with the help of the NodeSet.regroup() method
(see Regrouping node sets for further details). Only exact matching groups are returned (all containing nodes needed),
for example:

$ nodeset -r node[40-45]
@oss

$ nodeset -r node[0,40-45]
@mgnt,@oss

5.1. nodeset 37

ClusterShell Documentation, Release 1.8

When resolving node groups, nodeset always returns the largest groups first, instead of several smaller matching
groups, for instance:

$ nodeset -ll
@login node[50-51]
@compute node[52-81]
@intel node[50-81]

$ nodeset -r node[50-81]
@intel

If no matching group is found, nodeset -r still returns folded result (as does -f):

$ nodeset -r node40 node42
node[40,42]

Indexed node groups

Node groups are themselves some kind of group sets and can be indexable. To use this feature, node groups external
shell commands need to return indexed group names (automatically handled by the library as needed). For example,
take a look at these indexed node groups:

$ nodeset -l
@io1
@io2
@io3

$ nodeset -f @io[1-3]
node[40-45]

Arithmetic operations on node groups

Arithmetic and special operations (as explained for node sets in nodeset-arithmetic and nodeset-special are also sup-
ported with node groups. Any group name can be used in lieu of a node set, where it will be substituted for all nodes
in that group before processing requested operations. Some typical examples are:

$ nodeset -f @lustre -x @mds
node[40-45]

$ nodeset -r @lustre -x @mds
@oss

$ nodeset -r -a -x @lustre
@compute,@login,@mgnt

More advanced examples, with the use of node group sets, follow:

$ nodeset -r @io[1-3] -x @io2
@io[1,3]

$ nodeset -f -I0 @io[1-3]
node40

38 Chapter 5. Tools

ClusterShell Documentation, Release 1.8

$ nodeset -f --split=3 @oss
node[40-41]
node[42-43]
node[44-45]

$ nodeset -r --split=3 @oss
@io1
@io2
@io3

Extended patterns support with node groups

Even for node groups, the nodeset command supports arithmetic operations through its extended pattern feature (see
Extended String Pattern). A first example illustrates node groups intersection, that can be used in practice to get nodes
available from two dynamic group sources at a given time:

$ nodeset -f @db:prod\&@compute

The following fictive example computes a folded node set containing nodes found in node group @gpu and
@slurm:bigmem, but not in both, minus the nodes found in odd @chassis groups from 1 to 9 (computed from
left to right):

$ nodeset -f @gpu^@slurm:bigmem\!@chassis[1-9/2]

Also, version 1.7 introduces a notation extension @* (or @SOURCE:*) that has been added to quickly represent all
nodes (please refer to Selecting all nodes for more details).

Selecting all nodes

The option -a (without argument) can be used to select all nodes from a group source (see node groups configuration
for more details on special all external shell command upcall). Example of use for the default group source:

$ nodeset -a -f
example[4-6,32-159]

Use -s/--groupsource to select another group source.

If not properly configured, the -a option may lead to runtime errors like:

$ nodeset -s mybrokensource -a -f
nodeset: External error: Not enough working methods (all or map + list)

to get all nodes

A similar option is available with clush, see selecting all nodes with clush.

Node wildcards

ClusterShell 1.8 introduces node wildcards: * means match zero or more characters of any type; ? means match
exactly one character of any type.

Any wildcard mask found is matched against all nodes from the group source (see Selecting all nodes).

This can be especially useful for server farms, or when cluster node names differ. Say that your group configuration is
set to return the following “all nodes”:

5.1. nodeset 39

ClusterShell Documentation, Release 1.8

$ nodeset -f -a
bckserv[1-2],dbserv[1-4],wwwserv[1-9]

Then, you can use wildcards to select particular nodes, as shown below:

$ nodeset -f 'www*'
wwwserv[1-9]

$ nodeset -f 'www*[1-4]'
wwwserv[1-4]

$ nodeset -f '*serv1'
bckserv1,dbserv1,wwwserv1

Wildcard masks are resolved prior to extended patterns, but each mask is evaluated as a whole node set operand. In
the example below, we select all nodes matching *serv* before removing all nodes matching www*:

$ nodeset -f '*serv*!www*'
bckserv[1-2],dbserv[1-4]

Range sets

Working with range sets

By default, the nodeset command works with node or group sets and its functionality match most NodeSet class
methods. Similarly, nodeset will match RangeSet methods when you make use of the -R option switch. In that
case, all operations are restricted to numerical ranges. For example, to expand the range “1-10”, you should use:

$ nodeset -e -R 1-10
1 2 3 4 5 6 7 8 9 10

Almost all commands and operations available for node sets are also available with range sets. The only restrictions
are commands and operations related to node groups. For instance, the following command options are not available
with nodeset -R:

• -r, --regroup as this feature is obviously related to node groups,

• -a / --all as the all external call is also related to node groups.

Using range sets instead of node sets doesn’t change the general command usage, like the need of one command option
presence (cf. nodeset-commands), or the way to give some input (cf. nodeset-stdin), for example:

$ echo 3 2 36 0 4 1 37 | nodeset -fR
0-4,36-37

$ echo 0-8/4 | nodeset -eR -S'\n'
0
4
8

Stepping and auto-stepping are supported (cf. Stepping and auto-stepping) and also zero-padding (cf. nodeset-zpad),
which are both RangeSet class features anyway.

The following examples illustrate these last points:

40 Chapter 5. Tools

ClusterShell Documentation, Release 1.8

$ nodeset -fR 03 05 01 07 11 09
01,03,05,07,09,11

$ nodeset -fR --autostep=3 03 05 01 07 11 09
01-11/2

Arithmetic and special operations

All arithmetic operations, as seen for node sets (cf. nodeset-arithmetic), are available for range sets, for example:

$ nodeset -fR 1-14 -x 10-20
1-9

$ nodeset -fR 1-14 -i 10-20
10-14

$ nodeset -fR 1-14 -X 10-20
1-9,15-20

For now, there is no extended patterns syntax for range sets as for node sets (cf. Extended patterns support). However,
as the union operator , is available natively by design, such expressions are still allowed:

$ nodeset -fR 4-10,1-2
1-2,4-10

Besides arithmetic operations, special operations may be very convenient for range sets also. Below is an example
with -I / --slice (cf. nodeset-slice):

$ nodeset -fR -I 0 100-131
100

$ nodeset -fR -I 0-15 100-131
100-115

There is another special operation example with --split (cf. nodeset-splitting-n):

$ nodeset -fR --split=2 100-131
100-115
116-131

Finally, an example of the special operation --contiguous (cf. nodeset-splitting-contiguous):

$ nodeset -f -R --contiguous 1-9,11,13-19
1-9
11
13-19

rangeset alias

When using nodeset with range sets intensively (eg. for scripting), it may be convenient to create a local command
alias, as shown in the following example (Bourne shell), making it sort of a super seq(1) command:

$ alias rangeset='nodeset -R'
$ rangeset -e 0-8/2
0 2 4 6 8

5.1. nodeset 41

http://linux.die.net/man/1/seq

ClusterShell Documentation, Release 1.8

cluset

The cluset command is the same as nodeset and has been added in ClusterShell 1.7.3 to avoid a conflict with xCAT’s
nodeset command.

clush

clush is a program for executing commands in parallel on a cluster and for gathering their results. It can execute
commands interactively or can be used within shell scripts and other applications. It is a partial front-end to the Task
class of the ClusterShell library (cf. Structure of Task). clush currently makes use of the Ssh worker of ClusterShell
that only requires ssh(1) (we tested with OpenSSH SSH client).

Some features of clush command line tool are:

• two modes of parallel cluster commands execution:

– flat mode: sliding window of local or remote (eg. ssh(1)) commands

– tree mode: commands propagated to the targets through a tree of pre-configured gateways; gateways are
then using a sliding window of local or ssh(1) commands to reach the targets (if the target count per
gateway is greater than the fanout value)

• smart display of command results (integrated output gathering, sorting by node, nodeset or node groups)

• standard input redirection to remote nodes

• files copying in parallel

• pdsh1 options backward compatibility

clush can be started non-interactively to run a shell command, or can be invoked as an interactive shell. Both modes
are discussed here (clush-oneshot clush-interactive).

Target and filter nodes

clush offers different ways to select or filter target nodes through command line options or files containing a list of
hosts.

Command line options

The -w option allows you to specify remote hosts by using ClusterShell NodeSet syntax, including the node groups
@group special syntax (cf. Node group expression rules) and the Extended String Patterns syntax (see Extended String
Pattern) to benefits from NodeSet basic arithmetics (like @Agroup&@Bgroup). Additionally, the -x option allows
you to exclude nodes from remote hosts list (the same NodeSet syntax can be used here). Nodes exclusion has priority
over nodes addition.

Using node groups

If you have ClusterShell node groups configured on your cluster, any node group syntax may be used in place of nodes
for -w as well as -x.

For example:

1 LLNL parallel remote shell utility (https://computing.llnl.gov/linux/pdsh.html)

42 Chapter 5. Tools

https://computing.llnl.gov/linux/pdsh.html

ClusterShell Documentation, Release 1.8

$ clush -w @rhel6 cat /proc/loadavg
node26: 0.02 0.01 0.00 1/202 23042

For pdsh backward compatibility, clush supports two -g and -X options to respectively select and exclude nodes
group(s), but only specified by omitting any “@” group prefix (see example below). In general, though, it is advised
to use the @-prefixed group syntax as the non-prefixed notation is only recognized by clush but not by other tools like
nodeset.

For example:

$ clush -g rhel6 cat /proc/loadavg
node26: 0.02 0.01 0.00 1/202 23033

Selecting all nodes

The special option -a (without argument) can be used to select all nodes, in the sense of ClusterShell node groups (see
node groups configuration for more details on special all external shell command upcall). If not properly configured,
the -a option may lead to a runtime error like:

clush: External error: Not enough working external calls (all, or map +
list) defined to get all node

Picking node(s) at random

Use --pick with a maximum number of nodes you wish to pick randomly from the targeted node set. clush will
then run only on selected node(s). The following example will run a script on a single random node picked from the
@compute group:

$ clush -w @compute --pick=1 ./nonreg-single-client-fs-io.sh

Host files

The option --hostfile (or --machinefile) may be used to specify a path to a file containing a list of single
hosts, node sets or node groups, separated by spaces and lines. It may be specified multiple times (one per file).

For example:

$ clush --hostfile ./host_file -b systemctl is-enabled httpd

This option has been added as backward compatibility with other parallel shell tools. Indeed, ClusterShell provides
a preferred way to provision node sets from node group sources and flat files to all cluster tools using NodeSet
(including clush). Please see node groups configuration.

Note: Use --debug or -d to see resulting node sets from host files.

Flat execution mode

The default execution mode is to launch commands (local or remote) in parallel, up to a certain limit fixed by the fanout
value, which is the number of child processes allowed to run at a time. This “sliding window” of active commands is a

5.3. clush 43

ClusterShell Documentation, Release 1.8

common technique used on large clusters to conserve resources on the initiating host, while allowing some commands
to time out. If used with ssh(1), this does actually limit the number of concurrent ssh connections.

Fanout (sliding window)

The --fanout (or -f) option of clush allows the user to change the default fanout value defined in clush.conf or in
the library defaults if not specified.

Indeed, it is sometimes useful to change the fanout value for a specific command, for example to avoid flooding a
remote service with concurrent requests generated by that actual command.

The following example will launch up to ten puppet commands at a time on the node group named @compute:

$ clush -w @compute -f 10 puppet agent -t

If the fanout value is set to 1, commands are executed sequentially:

$ clush -w node[40-42] -f 1 'date +%s; sleep 1'
node40: 1505366138
node41: 1505366139
node42: 1505366140

Tree execution mode

ClusterShell’s tree execution mode is a major horizontal scalability improvement by providing a hierarchical command
propagation scheme.

The Tree mode of ClusterShell has been the subject of this paper presented at the Ottawa Linux Symposium Conference
in 2012 and at the PyHPC 2013 workshop in Denver, USA.

The diagram below illustrates the hierarchical command propagation principle with a head node, gateways (GW) and
target nodes:

.-----------.
| Head node |
'-----------'

/|\
.------------' | '--.-----------.

/ | \ \
.-----. .-----. \ .-----.
| GW1 | | GW2 | \ | GW3 |
'-----' '-----' \ '-----'

/|\ /|\ \ |\
.-' | '-. .-' | '-. \ | '---.

/ | \ / | \ \ | \
.---. .---. .---. .---. .---. .---. .---. .---. .-----.
'---' '---' '---' '---' '---' '---' '---' '---' | GW4 |

target nodes '-----'
|

...

The Tree mode is implemented at the library level, so that all applications using ClusterShell may benefits from it.
However, this section describes how to use the tree mode with the clush command only.

44 Chapter 5. Tools

https://www.kernel.org/doc/ols/2012/ols2012-thiell.pdf

ClusterShell Documentation, Release 1.8

Configuration

The system-wide library configuration file /etc/clustershell/topology.conf defines the routes of default command prop-
agation tree. It is recommended that all connections between parent and children nodes are carefully pre-configured,
for example, to avoid any SSH warnings when connecting (if using the default SSH remote worker, of course).

The content of the topology.conf file should look like this:

[routes]
rio0: rio[10-13]
rio[10-11]: rio[100-240]
rio[12-13]: rio[300-440]

This file defines the following topology graph:

rio0
|- rio[10-11]
| `- rio[100-240]
`- rio[12-13]

`- rio[300-440]

At runtime, ClusterShell will pick an initial propagation tree from this topology graph definition and the current root
node. Multiple admin/root nodes may be defined in the file.

Note: The algorithm used in Tree mode does not rely on gateway system hostnames anymore. In topology.conf, just
use the hosts or aliases needed to connect to each node.

Enabling tree mode

Since version 1.7, the tree mode is enabled by default when a configuration file is present. When the configuration file
/etc/clustershell/topology.conf exists, clush will use it by default for target nodes that are defined there. The topology
file path can be changed using the --topology command line option.

Note: If using clush -d (debug option), clush will display an ASCII representation of the initial propagation tree
used. This is useful when working on Tree mode configuration.

Enabling tree mode should be as much transparent as possible to the end user. Most clush options, including options
defined in clush.conf or specified using -O or -o (ssh options) are propagated to the gateways and taken into account
there.

Tree mode specific options

The --remote=yes|no command line option controls the remote execution behavior:

• Default is yes, that will make clush establish connections up to the leaf nodes using a distant worker like ssh.

• Changing it to no will make clush establish connections up to the leaf parent nodes only, then the commands
are executed locally on the gateways (like if it would be with --worker=exec on the gateways themselves).
This execution mode allows users to schedule remote commands on gateways that take a node as an argument.
On large clusters, this is useful to spread the load and resources used of one-shot monitoring, IPMI, or other
commands on gateways. A simple example of use is:

5.3. clush 45

ClusterShell Documentation, Release 1.8

$ clush -w node[100-199] --remote=no /usr/sbin/ipmipower -h %h-ipmi -s

This command is also valid if you don’t have any tree configured, because in that case, --remote=no is an
alias of --worker=exec worker.

The --grooming command line option allows users to change the grooming delay (float, in seconds). This feature
allows gateways to aggregate responses received within a certain timeframe before transmitting them back to the root
node in a batch fashion. This contributes to reducing the load on the root node by delegating the first steps of this CPU
intensive task to the gateways.

Fanout considerations

ClusterShell uses a “sliding window” or fanout of processes to avoid too many concurrent connections and to conserve
resources on the initiating hosts. See Flat execution mode for more details about this.

In tree mode, the same fanout value is used on the head node and on each gateway. That is, if the fanout is 16, each
gateway will initiate up to 16 connections to their target nodes at the same time.

Note: This is likely to change in the future, as it makes the fanout behaviour different if you are using the tree mode
or not. For example, some administrators are using a fanout value of 1 to “sequentialize” a command on the cluster.
In tree mode, please note that in that case, each gateway will be able to run a command at the same time.

Remote Python executable

You must use the same major version of Python on the gateways and the root node. By default, the same python
executable name than the one used on the root node will be used to launch the gateways, that is, python or python3
(using relative path for added flexibility). You may override the selection of the remote Python interpreter by defining
the following environment variable:

$ export CLUSTERSHELL_GW_PYTHON_EXECUTABLE=/path/to/python3

Note: It is highly recommended to have the same Python interpeter installed on all gateways and the root node.

Debugging Tree mode

To debug Tree mode, you can define the following environment variable before running clush (or any other applications
using ClusterShell):

$ export CLUSTERSHELL_GW_LOG_LEVEL=DEBUG (default value is INFO)
$ export CLUSTERSHELL_GW_LOG_DIR=/tmp (default value is /tmp)

This will generate log files of the form $HOSTNAME.gw.log in CLUSTERSHELL_GW_LOG_DIR.

Non-interactive (or one-shot) mode

When clush is started non-interactively, the command is executed on the specified remote hosts in parallel (given the
current fanout value and the number of commands to execute (see fanout library settings in Configuring the Task
object).

46 Chapter 5. Tools

ClusterShell Documentation, Release 1.8

Output gathering options

If option -b or --dshbak is specified, clush waits for command completion while displaying a progress indicator
and then displays gathered output results. If standard output is redirected to a file, clush detects it and disable any
progress indicator.

Warning: clush will only consolidate identical command outputs if the command return codes are also the same.

The following is a simple example of clush command used to execute uname -r on node40, node41 and node42,
wait for their completion and finally display digested output results:

$ clush -b -w node[40-42] uname -r

node[40-42]

2.6.35.6-45.fc14.x86_64

It is common to cancel such command execution because a node is hang. When using pdsh and dshbak, due to the
pipe, all nodes output will be lost, even if all nodes have successfully run the command. When you hit CTRL-C with
clush, the task is canceled but received output is not lost:

$ clush -b -w node[1-5] uname -r
Warning: Caught keyboard interrupt!

node[2-4] (3)

2.6.31.6-145.fc11

node5

2.6.18-164.11.1.el5
Keyboard interrupt (node1 did not complete).

Performing diff of cluster-wide outputs

Since version 1.6, you can use the --diff clush option to show differences between common outputs. This feature is
implemented using Python unified diff. This special option implies -b (gather common stdout outputs) but you don’t
need to specify it. Example:

$ clush -w node[40-42] --diff dmidecode -s bios-version
--- node[40,42] (2)
+++ node41
@@ -1,1 +1,1 @@
-1.0.5S56
+1.1c

A nodeset is automatically selected as the “reference nodeset” according to these criteria:

1. lowest command return code (to discard failed commands)

2. largest nodeset with the same output result

3. otherwise the first nodeset is taken (ordered (1) by name and (2) lowest range indexes)

5.3. clush 47

http://docs.python.org/library/difflib.html#difflib.unified_diff

ClusterShell Documentation, Release 1.8

Standard input bindings

Unless the option --nostdin (or -n) is specified, clush detects when its standard input is connected to a terminal
(as determined by isatty(3)). If actually connected to a terminal, clush listens to standard input when commands are
running, waiting for an Enter key press. Doing so will display the status of current nodes. If standard input is not
connected to a terminal, and unless the option --nostdin (or -n) is specified, clush binds the standard input of the
remote commands to its own standard input, allowing scripting methods like:

$ echo foo | clush -w node[40-42] -b cat

node[40-42]

foo

Another stdin-bound clush usage example:

$ ssh node10 'ls /etc/yum.repos.d/*.repo' | clush -w node[11-14] -b xargs ls

node[11-14] (4)

/etc/yum.repos.d/cobbler-config.repo

Note: Use --nostdin (or -n) in the same way you would use ssh -n to disable standard input. Indeed, if this
option is set, EOF is sent at first read, as if stdin were actually connected to /dev/null.

Progress indicator

In output gathering mode, clush will display a live progress indicator as a simple but convenient way to follow the
completion of parallel commands. It can be disabled just by using the -q or --quiet options. The progress indicator
will appear after 1 to 2 seconds and should look like this:

clush: <command_completed>/<command_total>

If writing is performed to clush standard input, like in command | clush, the live progress indicator will display
the global bandwidth of data written to the target nodes.

Finally, the special option --progress can be used to force the display of the live progress indicator. Using this
option may interfere with some command outputs, but it can be useful when using stdin while remote commands
are silent. As an example, the following command will copy a local file to node[1-3] and display the global write
bandwidth to the target nodes:

$ dd if=/path/to/local/file | clush -w node[1-3] --progress 'dd of=/path/to/remote/
→˓file'
clush: 0/3 write: 212.27 MiB/s

Interactive mode

If a command is not specified, clush runs interactively. In this mode, clush uses the GNU readline library to read
command lines from the terminal. Readline provides commands for searching through the command history for lines
containing a specified string. For instance, you can type Control-R to search in the history for the next entry matching
the search string typed so far.

48 Chapter 5. Tools

ClusterShell Documentation, Release 1.8

Single-character interactive commands

clush also recognizes special single-character prefixes that allows the user to see and modify the current nodeset (the
nodes where the commands are executed). These single-character interactive commands are detailed below:

Interactive special commands Comment
clush> ? show current nodeset
clush> +<NODESET> add nodes to current nodeset
clush> -<NODESET> remove nodes from current nodeset
clush> @<NODESET> set current nodeset
clush> !<COMMAND> execute <COMMAND> on the local system
clush> = toggle the ouput format (gathered or standard mode)

To leave an interactive session, type quit or Control-D. As of version 1.6, it is not possible to cancel a command while
staying in clush interactive session: for instance, Control-C is not supported and will abort current clush interactive
command (see ticket #166).

Example of clush interactive session:

$ clush -w node[11-14] -b
Enter 'quit' to leave this interactive mode
Working with nodes: node[11-14]
clush> uname

node[11-14] (4)

Linux
clush> !pwd
LOCAL: /root
clush> -node[11,13]
Working with nodes: node[12,14]
clush> uname

node[12,14] (2)

Linux
clush>

The interactive mode and commands described above are subject to change and improvements in future releases. Feel
free to open an enhancement ticket if you use the interactive mode and have some suggestions.

File copying mode

When clush is started with the -c or --copy option, it will attempt to copy specified file and/or directory to the
provided target cluster nodes. If the --dest option is specified, it will put the copied files or directory there.

Here are some examples of file copying with clush:

$ clush -v -w node[11-12] --copy /tmp/foo
`/tmp/foo' -> node[11-12]:`/tmp'

$ clush -v -w node[11-12] --copy /tmp/foo /tmp/bar
`/tmp/bar' -> aury[11-12]:`/tmp'
`/tmp/foo' -> aury[11-12]:`/tmp'

$ clush -v -w node[11-12] --copy /tmp/foo --dest /var/tmp/
`/tmp/foo' -> node[11-12]:`/var/tmp/'

5.3. clush 49

https://github.com/cea-hpc/clustershell/issues/166
https://github.com/cea-hpc/clustershell/issues/new

ClusterShell Documentation, Release 1.8

Reverse file copying mode

When clush is started with the --rcopy option, it will attempt to retrieve specified file and/or directory from provided
cluster nodes. If the --dest option is specified, it must be a directory path where the files will be stored with their
hostname appended. If the destination path is not specified, it will take the first file or dir basename directory as the
local destination, example:

$ clush -v -w node[11-12] --rcopy /tmp/foo
node[11-12]:`/tmp/foo' -> `/tmp'

$ ls /tmp/foo.*
/tmp/foo.node11 /tmp/foo.node12

Other options

Overriding clush.conf settings

clush default settings are found in a configuration described in clush configuration. To override any settings, use the
--option command line option (or -O for the shorter version), and repeat as needed. Here is a simple example to
disable the use colors in the output nodeset header:

$ clush -O color=never -w node[11-12] -b echo ok

node[11-12] (2)

ok

Worker selection

By default, clush is using the default library worker configuration when running commands or copying files. In most
cases, this is ssh (See Changing default worker for default worker selection).

Worker selection can be performed at runtime thanks to --worker command line option (or -R for the shorter
version in order to be compatible with pdsh remote command selection option):

$ clush -w node[11-12] --worker=rsh echo ok
node11: ok
node12: ok

By default, ClusterShell supports the following worker identifiers:

• exec: this local worker supports parallel command execution, doesn’t rely on any external tool and provides
command line placeholders described below:

– %h and %host are substitued with each target hostname

– %hosts is substitued with the full target nodeset

– %n and %rank are substitued with the remote rank (0 to n-1)

For example, the following would request the exec worker to locally run multiple ipmitool commands across the
hosts foo[0-10] and automatically aggregate output results (-b):

$ clush -R exec -w foo[0-10] -b ipmitool -H %h-ipmi chassis power status

foo[0-10] (11)

50 Chapter 5. Tools

ClusterShell Documentation, Release 1.8

Chassis Power is on

• rsh: remote worker based on rsh

• ssh: remote worker based on ssh (default)

• pdsh: remote worker based on pdsh that requires pdsh to be installed; doesn’t provide write support (eg. you
cannot cat file | clush --worker pdsh); it is primarily an 1-to-n worker example.

clubak

Overview

clubak is another utility provided with the ClusterShell library that try to gather and sort such dsh-like output:

node17: MD5 (cstest.py) = 62e23bcf2e11143d4875c9826ef6183f
node14: MD5 (cstest.py) = 62e23bcf2e11143d4875c9826ef6183f
node16: MD5 (cstest.py) = e88f238673933b08d2b36904e3a207df
node15: MD5 (cstest.py) = 62e23bcf2e11143d4875c9826ef6183f

If file content is made of such output, you got the following result:

$ clubak -b < file

node[14-15,17] (3)

MD5 (cstest.py) = 62e23bcf2e11143d4875c9826ef6183f

node16

MD5 (cstest.py) = e88f238673933b08d2b36904e3a207df

Or with -L display option to disable header block:

$ clubak -bL < file
node[14-15,17]: MD5 (cstest.py) = 62e23bcf2e11143d4875c9826ef6183f
node16: MD5 (cstest.py) = e88f238673933b08d2b36904e3a207df

Indeed, clubak formats text from standard input containing lines of the form node: output. It is fully backward
compatible with dshbak(1) available with pdsh but provides additional features. For instance, clubak always displays
its results sorted by node/nodeset.

But you do not need to execute clubak when using clush as all output formatting features are already included in clush
(see clush -b / -B / -L examples, Non-interactive (or one-shot) mode). There are several advantages of having clubak
features included in clush: for example, it is possible, with clush, to still get partial results when interrupted during
command execution (eg. with Control-C), thing not possible by just piping commands together.

Most clubak options are the same as clush. For instance, to try to resolve node groups in results, use -r,
--regroup:

$ clubak -br < file

Like clush, clubak uses the ClusterShell.MsgTree module of the ClusterShell library.

5.4. clubak 51

ClusterShell Documentation, Release 1.8

Tree trace mode (-T)

A special option -T, --tree, only available with clubak, can switch on MsgTree trace mode (all keys/nodes are
kept for each message element of the tree, thus allowing special output display). This mode has been first added to
replace padb1 in some cases to display a whole cluster job digested backtrace.

For example:

$ cat trace_test
node3: first_func()
node1: first_func()
node2: first_func()
node5: first_func()
node1: second_func()
node4: first_func()
node3: bis_second_func()
node2: second_func()
node5: second_func()
node4: bis_second_func()

$ cat trace_test | clubak -TL
node[1-5]:
first_func()

node[1-2,5]:
second_func()

node[3-4]:
bis_second_func()

1 padb, a parallel application debugger (http://padb.pittman.org.uk/)

52 Chapter 5. Tools

http://padb.pittman.org.uk/

CHAPTER 6

Programming Guide

This part provides programming information for using ClusterShell in Python applications. It is divided into two
sections: node sets handling and cluster task management, in that order, because managing cluster tasks requires some
knowledge of how to deal with node sets. Each section also describes the conceptual structures of ClusterShell and
provides examples of how to use them.

This part is intended for intermediate and advanced programmers who are familiar with Python programming and
basic concepts of high-performance computing (HPC).

Node sets handling

NodeSet class

NodeSet is a class to represent an ordered set of node names (optionally indexed). It’s a convenient way to deal
with cluster nodes and ease their administration. NodeSet is implemented with the help of two other ClusterShell
public classes, RangeSet and RangeSetND, which implement methods to manage a set of numeric ranges in one or
multiple dimensions. NodeSet, RangeSet and RangeSetND APIs match standard Python sets. A command-line
interface (nodeset) which implements most of NodeSet features, is also available.

Other classes of the ClusterShell library makes use of the NodeSet class when they come to deal with distant nodes.

Using NodeSet

If you are used to Python sets, NodeSet interface will be easy for you to learn. The main conceptual difference is that
NodeSet iterators always provide ordered results (and also NodeSet.__getitem__() by index or slice is al-
lowed). Furthermore, NodeSet provides specific methods like NodeSet.split(), NodeSet.contiguous()
(see below), or NodeSet.groups(), NodeSet.regroup() (these last two are related to Node groups). The
following code snippet shows you a basic usage of the NodeSet class:

>>> from ClusterShell.NodeSet import NodeSet
>>> nodeset = NodeSet()
>>> nodeset.add("node7")

53

http://docs.python.org/library/sets.html

ClusterShell Documentation, Release 1.8

>>> nodeset.add("node6")
>>> print nodeset
node[6-7]

NodeSet class provides several object constructors:

>>> print NodeSet("node[1-5]")
node[1-5]
>>> print NodeSet.fromlist(["node1", "node2", "node3"])
node[1-3]
>>> print NodeSet.fromlist(["node[1-5]", "node[6-10]"])
node[1-10]
>>> print NodeSet.fromlist(["clu-1-[1-4]", "clu-2-[1-4]"])
clu-[1-2]-[1-4]

All corresponding Python sets operations are available, for example:

>>> from ClusterShell.NodeSet import NodeSet
>>> ns1 = NodeSet("node[10-42]")
>>> ns2 = NodeSet("node[11-16,18-39]")
>>> print ns1.difference(ns2)
node[10,17,40-42]
>>> print ns1 - ns2
node[10,17,40-42]
>>> ns3 = NodeSet("node[1-14,40-200]")
>>> print ns3.intersection(ns1)
node[10-14,40-42]

Unlike Python sets, it is important to notice that NodeSet is somewhat not so strict about the type of element used
for set operations. Thus when a string object is encountered, it is automatically converted to a NodeSet object for
convenience. The following example shows an example of this (set operation is working with either a native nodeset
or a string):

>>> nodeset = NodeSet("node[1-10]")
>>> nodeset2 = NodeSet("node7")
>>> nodeset.difference_update(nodeset2)
>>> print nodeset
node[1-6,8-10]
>>>
>>> nodeset.difference_update("node8")
>>> print nodeset
node[1-6,9-10]

NodeSet ordered content leads to the following being allowed:

>>> nodeset = NodeSet("node[10-49]")
>>> print nodeset[0]
node10
>>> print nodeset[-1]
node49
>>> print nodeset[10:]
node[20-49]
>>> print nodeset[:5]
node[10-14]
>>> print nodeset[::4]
node[10,14,18,22,26,30,34,38,42,46]

And it works for node names without index, for example:

54 Chapter 6. Programming Guide

ClusterShell Documentation, Release 1.8

>>> nodeset = NodeSet("lima,oscar,zulu,alpha,delta,foxtrot,tango,x-ray")
>>> print nodeset
alpha,delta,foxtrot,lima,oscar,tango,x-ray,zulu
>>> print nodeset[0]
alpha
>>> print nodeset[-2]
x-ray

And also for multidimensional node sets:

>>> nodeset = NodeSet("clu1-[1-10]-ib[0-1],clu2-[1-10]-ib[0-1]")
>>> print nodeset
clu[1-2]-[1-10]-ib[0-1]
>>> print nodeset[0]
clu1-1-ib0
>>> print nodeset[-1]
clu2-10-ib1
>>> print nodeset[::2]
clu[1-2]-[1-10]-ib0

To split a NodeSet object into n subsets, use the NodeSet.split() method, for example:

>>> for nodeset in NodeSet("node[10-49]").split(2):
... print nodeset
...
node[10-29]
node[30-49]

To split a NodeSet object into contiguous subsets, use the NodeSet.contiguous() method, for example:

>>> for nodeset in NodeSet("node[10-49,51-53,60-64]").contiguous():
... print nodeset
...
node[10-49]
node[51-53]
node[60-64]

For further details, please use the following command to see full NodeSet API documentation.

Multidimensional considerations

Version 1.7 introduces full support of multidimensional NodeSet (eg. da[2-5]c[1-2]p[0-1]). The NodeSet inter-
face is the same, multidimensional patterns are automatically detected by the parser and processed internally. While
expanding a multidimensional NodeSet is easily solved by performing a cartesian product of all dimensions, folding
nodes is much more complex and time consuming. To reduce the performance impact of such feature, the NodeSet
class still relies on RangeSet when only one dimension is varying (see RangeSet class). Otherwise, it uses a new
class named RangeSetND for full multidimensional support (see RangeSetND class).

Extended String Pattern

NodeSet class parsing engine recognizes an extended string pattern, adding support for union (with special character
”,”), difference (with special character ”!”), intersection (with special character “&”) and symmetric difference (with
special character “^”) operations. String patterns are read from left to right, by proceeding any character operators
accordinately. The following example shows how you can use this feature:

6.1. Node sets handling 55

ClusterShell Documentation, Release 1.8

>>> print NodeSet("node[10-42],node46!node10")
node[11-42,46]

Node groups

Node groups are very useful and are needed to group similar cluster nodes in terms of configuration, installed software,
available resources, etc. A node can be a member of more than one node group.

Using node groups

Node groups are prefixed with @ character. Please see Node group expression rules for more details about node group
expression/syntax rules.

Please also have a look at Node groups configuration to learn how to configure external node group bingings (sources).
Once setup (please use the nodeset command to check your configuration), the NodeSet parsing engine automatically
resolves node groups. For example:

>>> print NodeSet("@oss")
example[4-5]
>>> print NodeSet("@compute")
example[32-159]
>>> print NodeSet("@compute,@oss")
example[4-5,32-159]

That is, all NodeSet-based applications share the same system-wide node group configuration (unless explicitly dis-
abled — see Disabling node group resolution).

When the all group upcall is configured (node groups configuration), you can also use the following NodeSet con-
structor:

>>> print NodeSet.fromall()
example[4-6,32-159]

When group upcalls are not properly configured, this constructor will raise a NodeSetExternalError exception.

Finding node groups

In order to find node groups a specified node set belongs to, you can use the NodeSet.groups() method. This
method is used by nodeset -l <nodeset> command (see Finding node groups). It returns a Python dictio-
nary where keys are groups found and values, provided for convenience, are tuples of the form (group_nodeset,
contained_nodeset). For example:

>>> for group, (group_nodes, contained_nodes) in NodeSet("@oss").groups().iteritems():
... print group, group_nodes, contained_nodes
...
@all example[4-6,32-159] example[4-5]
@oss example[4-5] example[4-5]

More usage examples follow:

>>> print NodeSet("example4").groups().keys()
['@all', '@oss']
>>> print NodeSet("@mds").groups().keys()
['@all', '@mds']

56 Chapter 6. Programming Guide

ClusterShell Documentation, Release 1.8

>>> print NodeSet("dummy0").groups().keys()
[]

Regrouping node sets

If needed group configuration conditions are met (cf. node groups configuration), you can use the NodeSet.
regroup() method to reduce node sets using matching groups, whenever possible:

>>> print NodeSet("example[4-6]").regroup()
@mds,@oss

The nodeset command makes use of the NodeSet.regroup() method when using the -r switch (see Resolving
node groups).

Overriding default groups configuration

It is possible to override the libary default groups configuration by changing the default NodeSet resolver object.
Usually, this is done for testing or special purposes. Here is an example of how to override the resolver object using
NodeSet.set_std_group_resolver() in order to use another configuration file:

>>> from ClusterShell.NodeSet import NodeSet, set_std_group_resolver
>>> from ClusterShell.NodeUtils import GroupResolverConfig
>>> set_std_group_resolver(GroupResolverConfig("/other/groups.conf"))
>>> print NodeSet("@oss")
other[10-20]

It is possible to restore NodeSet default group resolver by passing None to the NodeSet.
set_std_group_resolver() module function, for example:

>>> from ClusterShell.NodeSet import set_std_group_resolver
>>> set_std_group_resolver(None)

Disabling node group resolution

If for any reason, you want to disable host groups resolution, you can use the special resolver value RE-
SOLVER_NOGROUP. In that case, NodeSet parsing engine will not recognize @ group characters anymore, for
instance:

>>> from ClusterShell.NodeSet import NodeSet, RESOLVER_NOGROUP
>>> print NodeSet("@oss")
example[4-5]
>>> print NodeSet("@oss", resolver=RESOLVER_NOGROUP)
@oss

Any attempts to use a group-based method (like NodeSet.groups() or NodeSet.regroups()) on such “no
group” NodeSet will raise a NodeSetExternalError exception.

NodeSet object serialization

The NodeSet class supports object serialization through the standard pickling. Group resolution is done before
pickling.

6.1. Node sets handling 57

ClusterShell Documentation, Release 1.8

Range sets

Cluster node names being typically indexed, common node sets rely heavily on numerical range sets. The RangeSet
module provides two public classes to deal directly with such range sets, RangeSet and RangeSetND, presented
in the following sections.

RangeSet class

The RangeSet class implements a mutable, ordered set of cluster node indexes (one dimension) featuring a fast
range-based API. This class is used by the NodeSet class (see NodeSet class). Since version 1.6, RangeSet re-
ally derives from standard Python set class (Python sets), and thus provides methods like RangeSet.union(),
RangeSet.intersection(), RangeSet.difference(), RangeSet.symmetric_difference()
and their in-place versions RangeSet.update(), RangeSet.intersection_update(), RangeSet.
difference_update() and RangeSet.symmetric_difference_update().

Since v1.6, padding of ranges (eg. 003-009) can be managed through a public RangeSet instance variable named
padding. It may be changed at any time. Padding is a simple display feature per RangeSet object, thus current padding
value is not taken into account when computing set operations. Also since v1.6, RangeSet is itself an iterator over
its items as integers (instead of strings). To iterate over string items as before (with optional padding), you can now
use the RangeSet.striter() method.

RangeSetND class

The RangeSetND class builds a N-dimensional RangeSet mutable object and provides the common set methods.
This class is public and may be used directly, however we think it is less convenient to manipulate that NodeSet and
does not necessarily provide the same one-dimension optimization (see Multidimensional considerations). Several
constructors are available, using RangeSet objects, strings or individual multidimensional tuples, for instance:

>>> from ClusterShell.RangeSet import RangeSet, RangeSetND
>>> r1 = RangeSet("1-5/2")
>>> r2 = RangeSet("10-12")
>>> r3 = RangeSet("0-4/2")
>>> r4 = RangeSet("10-12")
>>> print r1, r2, r3, r4
1,3,5 10-12 0,2,4 10-12
>>> rnd = RangeSetND([[r1, r2], [r3, r4]])
>>> print rnd
0-5; 10-12

>>> print list(rnd)
[(0, 10), (0, 11), (0, 12), (1, 10), (1, 11), (1, 12), (2, 10), (2, 11), (2, 12), (3,
→˓10), (3, 11), (3, 12), (4, 10), (4, 11), (4, 12), (5, 10), (5, 11), (5, 12)]
>>> r1 = RangeSetND([(0, 4), (0, 5), (1, 4), (1, 5)])
>>> len(r1)
4
>>> str(r1)
'0-1; 4-5\n'
>>> r2 = RangeSetND([(1, 4), (1, 5), (1, 6), (2, 5)])
>>> str(r2)
'1; 4-6\n2; 5\n'
>>> r = r1 & r2
>>> str(r)
'1; 4-5\n'

58 Chapter 6. Programming Guide

http://docs.python.org/library/sets.html

ClusterShell Documentation, Release 1.8

>>> list(r)
[(1, 4), (1, 5)]

Task management

Structure of Task

A ClusterShell Task and its underlying Engine class are the fundamental infrastructure associated with a thread. An
Engine implements an event processing loop that you use to schedule work and coordinate the receipt of incoming
events. The purpose of this run loop is to keep your thread busy when there is work to do and put your thread to sleep
when there is none. When calling the Task.resume() or Task.run() methods, your thread enters the Task
Engine run loop and calls installed event handlers in response to incoming events.

Using Task objects

A Task object provides the main interface for adding shell commands, files to copy or timer and then running it. Every
thread has a single Task object (and underlying Engine object) associated with it. The Task object is an instance of the
Task class.

Getting a Task object

To get the Task object bound to the current thread, you use one of the following:

• Use the Task.task_self() function available at the root of the Task module

• or use task = Task(); Task objects are only instantiated when needed.

Example of getting the current task object:

>>> from ClusterShell.Task import task_self
>>> task = task_self()

So for a single-threaded application, a Task is a simple singleton (which instance is also available through Task.
task_self()).

To get the Task object associated to a specific thread identified by the identifier tid, you use the following:

>>> from ClusterShell.Task import Task
>>> task = Task(thread_id=tid)

Configuring the Task object

Each Task provides an info dictionary that shares both internal Task-specific parameters and user-defined (key, value)
parameters. Use the following Task class methods to get or set parameters:

• Task.info()

• Task.set_info()

For example, to configure the task debugging behavior:

6.3. Task management 59

ClusterShell Documentation, Release 1.8

>>> task.set_info('debug', True)
>>> task.info('debug')
True

You can also use the Task info dictionary to set your own Task-specific key, value pairs. You may use any free keys
but only keys starting with USER_ are guaranteed not to be used by ClusterShell in the future.

Task info keys and their default values:

Info key
string

Default
value

Comment

debug False Enable debugging support (boolean)
print_debug internal

using
print

Default is to print debug lines to stdout using print. To override this behavior, set a
function that takes two arguments (the task object and a string) as the value.

fanout 64 Ssh fanout window (integer)
con-
nect_timeout

10 Value passed to ssh or pdsh (integer)

com-
mand_timeout

0 (no
timeout)

Value passed to ssh or pdsh (integer)

Below is an example of print_debug override. As you can see, we set the function print_csdebug(task, s) as the value.
When debugging is enabled, this function will be called for any debug text line. For example, this function searchs for
any known patterns and print a modified debug line to stdout when found:

def print_csdebug(task, s):
m = re.search("(\w+): SHINE:\d:(\w+):", s)
if m:

print "%s<pickle>" % m.group(0)
else:

print s

Install the new debug printing function
task_self().set_info("print_debug", print_csdebug)

Submitting a shell command

You can submit a set of commands for local or distant execution in parallel with Task.shell().

Local usage:

task.shell(command [, key=key] [, handler=handler] [, timeout=secs])

Distant usage:

task.shell(command, nodes=nodeset [, handler=handler] [, timeout=secs])

This method makes use of the default local or distant worker. ClusterShell uses a default Worker based on the Python
Popen2 standard module to execute local commands, and a Worker based on ssh (Secure SHell) for distant commands.

If the Task is not running, the command is scheduled for later execution. If the Task is currently running, the command
is executed as soon as possible (depending on the current fanout).

To set a per-worker (eg. per-command) timeout value, just use the timeout parameter (in seconds), for example:

task.shell("uname -r", nodes=remote_nodes, handler=ehandler, timeout=5)

60 Chapter 6. Programming Guide

ClusterShell Documentation, Release 1.8

This is the prefered way to specify a command timeout. EventHandler.ev_timeout() event is generated
before the worker has finished to indicate that some nodes have timed out. You may then retrieve the nodes with
DistantWorker.iter_keys_timeout().

Submitting a file copy action

Local file copy to distant nodes is supported. You can submit a copy action with Task.copy():

task.copy(source, dest, nodes=nodeset [, handler=handler] [, timeout=secs])

This method makes use of the default distant copy worker which is based on scp (Secure CoPy) which comes with
OpenSSH.

If the Task is not running, the copy is scheduled for later execution. If the Task is currently running, the copy is started
as soon as possible (depending on the current fanout).

Starting the Task

Before you run a Task, you must add at least one worker (shell command, file copy) or timer to it. If a Task does not
have any worker to execute and monitor, it exits immediately when you try to run it with:

task.resume()

At this time, all previously submitted commands will start in the associated Task thread. From a library user point of
view, the task thread is blocked until the end of the command executions.

Please note that the special method Task.run() does a Task.shell() and a Task.resume() in once.

To set a Task execution timeout, use the optional timeout parameter to set the timeout value in seconds. Once this
time is elapsed when the Task is still running, the running Task raises TimeoutError exception, cleaning by the
way all scheduled workers and timers. Using such a timeout ensures that the Task will not exceed a given time
for all its scheduled works. You can also configure per-worker timeout that generates an event EventHandler.
ev_timeout() but will not raise an exception, allowing the Task to continue. Indeed, using a per-worker timeout
is the prefered way for most applications.

Getting Task results

After the task is finished (after Task.resume() or Task.run()) or after a worker is completed when you have
previously defined an event handler (at EventHandler.ev_close()), you can use Task result getters:

• Task.iter_buffers()

• Task.iter_errors()

• Task.node_buffer()

• Task.node_error()

• Task.max_retcode()

• Task.num_timeout()

• Task.iter_keys_timeout()

Note: buffer refers to standard output, error to standard error.

Please see some examples in Programming Examples.

6.3. Task management 61

ClusterShell Documentation, Release 1.8

Exiting the Task

If a Task does not have anymore scheduled worker or timer (for example, if you run one shell command and then it
closes), it exits automatically from Task.resume(). Still, except from a signal handler, you can always call the
following method to abort the Task execution:

• Task.abort()

For example, it is safe to call this method from an event handler within the task itself. On abort, all scheduled workers
(shell command, file copy) and timers are cleaned and Task.resume() returns, unblocking the Task thread from a
library user point of view. Please note that commands being executed remotely are not necessary stopped (this is due
to ssh(1) behavior).

Configuring a Timer

A timer is bound to a Task (and its underlying Engine) and fires at a preset time in the future. Timers can fire either
only once or repeatedly at fixed time intervals. Repeating timers can also have their next firing time manually adjusted
(see Task.timer()).

A timer is not a real-time mechanism; it fires when the Task’s underlying Engine to which the timer has been added is
running and able to check if the timer firing time has passed.

When a timer fires, the method EventHandler.ev_timer() of the associated EventHandler is called.

To configure a timer, use the following (secs in seconds with floating point precision):

task.timer(self, fire=secs, handler=handler [, interval=secs])

Changing default worker

When calling Task.shell() or Task.copy() the Task object creates a worker instance for each call. When the
nodes argument is defined, the worker class used for these calls is based on Task default distant_worker. Change this
value to use another worker class, by example Rsh:

from ClusterShell.Task import task_self
from ClusterShell.Worker.Rsh import WorkerRsh

task_self().set_default('distant_worker', WorkerRsh)

Thread safety and Task objects

ClusterShell is an event-based library and one of its advantage is to avoid the use of threads (and their safety issues),
so it’s mainly not thread-safe. When possible, avoid the use of threads with ClusterShell. However, it’s sometimes
not so easy, first because another library you want to use in some event handler is not event-based and may block the
current thread (that’s enough to break the deal). Also, in some cases, it could be useful for you to run several Tasks
at the same time. Since version 1.1, ClusterShell provides support for launching a Task in another thread and some
experimental support for multiple Tasks, but:

• you should ensure that a Task is configured and accessed from one thread at a time before it’s running (there is
no API lock/mutex protection),

• once the Task is running, you should modify it only from the same thread that owns that Task (for example, you
cannot call Task.abort() from another thread).

62 Chapter 6. Programming Guide

ClusterShell Documentation, Release 1.8

The library provides two thread-safe methods and a function for basic Task interactions: Task.wait(), Task.
join() and Task.task_wait() (function defined at the root of the Task module). Please refer to the API
documentation.

Configuring explicit Shell Worker objects

We have seen in Submitting a shell command how to easily submit shell commands to the Task. The Task.shell()
method returns an already scheduled Worker object. It is possible to instantiate the Worker object explicitly, for
example:

from ClusterShell.Worker.Ssh import WorkerSsh

worker = WorkerSsh('node3', command="/bin/echo alright")

To be used in a Task, add the worker to it with:

task.schedule(worker)

If you have pdsh installed, you can use it by easily switching to the Pdsh worker, which should behave the same
manner as the Ssh worker:

from ClusterShell.Worker.Pdsh import WorkerPdsh

worker = WorkerPdsh('node3', command="/bin/echo alright")

Programming Examples

Remote command example (sequential mode)

The following example shows how to send a command on some nodes, how to get a specific buffer and how to get
gathered buffers:

from ClusterShell.Task import task_self
task = task_self()

task.run("/bin/uname -r", nodes="green[36-39,133]")

print task.node_buffer("green37")

for buf, nodes in task.iter_buffers():
print nodes, buf

if task.max_retcode() != 0:
print "An error occurred (max rc = %s)" % task.max_retcode()

Result:

2.6.32-431.el6.x86_64
['green37', 'green38', 'green36', 'green39'] 2.6.32-431.el6.x86_64
['green133'] 3.10.0-123.20.1.el7.x86_64
Max return code is 0

6.4. Programming Examples 63

ClusterShell Documentation, Release 1.8

Remote command example with live output (event-based mode)

The following example shows how to use the event-based programmation model by installing an EventHandler and
listening for EventHandler.ev_read() (we’ve got a line to read) and EventHandler.ev_hup() (one com-
mand has just completed) events. The goal here is to print standard outputs of uname -a commands during their
execution and also to notify the user of any erroneous return codes:

from ClusterShell.Task import task_self
from ClusterShell.Event import EventHandler

class MyHandler(EventHandler):

def ev_read(self, worker, node, sname, msg):
print "%s: %s" % (node, msg)

def ev_hup(self, worker, node, rc):
if rc != 0:

print "%s: returned with error code %s" % (node, rc)

task = task_self()

Submit command, install event handler for this command and run task
task.run("/bin/uname -a", nodes="fortoy[32-159]", handler=MyHandler())

check_nodes.py example script

The following script is available as an example in the source repository and is usually packaged with ClusterShell:

#!/usr/bin/python
check_nodes.py: ClusterShell simple example script.
#
This script runs a simple command on remote nodes and report node
availability (basic health check) and also min/max boot dates.
It shows an example of use of Task, NodeSet and EventHandler objects.
Feel free to copy and modify it to fit your needs.
#
Usage example: ./check_nodes.py -n node[1-99]

import optparse
from datetime import date, datetime
import time

from ClusterShell.Event import EventHandler
from ClusterShell.NodeSet import NodeSet
from ClusterShell.Task import task_self

class CheckNodesResult(object):
"""Our result class"""
def __init__(self):

"""Initialize result class"""
self.nodes_ok = NodeSet()
self.nodes_ko = NodeSet()
self.min_boot_date = None
self.max_boot_date = None

64 Chapter 6. Programming Guide

ClusterShell Documentation, Release 1.8

def show(self):
"""Display results"""
if self.nodes_ok:

print "%s: OK (boot date: min %s, max %s)" % \
(self.nodes_ok, self.min_boot_date, self.max_boot_date)

if self.nodes_ko:
print "%s: FAILED" % self.nodes_ko

class CheckNodesHandler(EventHandler):
"""Our ClusterShell EventHandler"""

def __init__(self, result):
"""Initialize our event handler with a ref to our result object."""
EventHandler.__init__(self)
self.result = result

def ev_read(self, worker, node, sname, msg):
"""Read event from remote nodes"""
this is an example to demonstrate remote result parsing
bootime = " ".join(msg.strip().split()[2:])
date_boot = None
for fmt in ("%Y-%m-%d %H:%M",): # formats with year

try:
datetime.strptime() is Python2.5+, use old method instead
date_boot = datetime(*(time.strptime(bootime, fmt)[0:6]))

except ValueError:
pass

for fmt in ("%b %d %H:%M",): # formats without year
try:

date_boot = datetime(date.today().year, \

*(time.strptime(bootime, fmt)[1:6]))
except ValueError:

pass
if date_boot:

if not self.result.min_boot_date or \
self.result.min_boot_date > date_boot:
self.result.min_boot_date = date_boot

if not self.result.max_boot_date or \
self.result.max_boot_date < date_boot:
self.result.max_boot_date = date_boot

self.result.nodes_ok.add(node)
else:

self.result.nodes_ko.add(node)

def ev_close(self, worker, timedout):
"""Worker has finished (command done on all nodes)"""
if timedout:

nodeset = NodeSet.fromlist(worker.iter_keys_timeout())
self.result.nodes_ko.add(nodeset)

self.result.show()

def main():
""" Main script function """
Initialize option parser
parser = optparse.OptionParser()
parser.add_option("-d", "--debug", action="store_true", dest="debug",

default=False, help="Enable debug mode")
parser.add_option("-n", "--nodes", action="store", dest="nodes",

6.4. Programming Examples 65

ClusterShell Documentation, Release 1.8

default="@all", help="Target nodes (default @all group)")
parser.add_option("-f", "--fanout", action="store", dest="fanout",

default="128", help="Fanout window size (default 128)",
type=int)

parser.add_option("-t", "--timeout", action="store", dest="timeout",
default="5", help="Timeout in seconds (default 5)",
type=float)

options, _ = parser.parse_args()

Get current task (associated to main thread)
task = task_self()
nodes_target = NodeSet(options.nodes)
task.set_info("fanout", options.fanout)
if options.debug:

print "nodeset : %s" % nodes_target
task.set_info("debug", True)

Create ClusterShell event handler
handler = CheckNodesHandler(CheckNodesResult())

Schedule remote command and run task (blocking call)
task.run("who -b", nodes=nodes_target, handler=handler, \

timeout=options.timeout)

if __name__ == '__main__':
main()

Using NodeSet with Parallel Python Batch script using SLURM

The following example shows how to use the NodeSet class to expand $SLURM_NODELIST environment variable in
a Parallel Python batch script launched by SLURM. This variable may contain folded node sets. If ClusterShell is not
available system-wide on your compute cluster, you need to follow Installing ClusterShell as user using PIP first.

Example of SLURM pp.sbatch to submit using sbatch pp.sbatch:

#!/bin/bash

#SBATCH -N 2
#SBATCH --ntasks-per-node 1

run the servers
srun ~/.local/bin/ppserver.py -w $SLURM_CPUS_PER_TASK -t 300 &
sleep 10

launch the parallel processing
python -u ./pp_jobs.py

Example of a pp_jobs.py script:

#!/usr/bin/env python

import os, time
import pp
from ClusterShell.NodeSet import NodeSet

66 Chapter 6. Programming Guide

ClusterShell Documentation, Release 1.8

get the nodelist form Slurm
nodeset = NodeSet(os.environ['SLURM_NODELIST'])

start the servers (ncpus=0 will make sure that none is started locally)
casting nodelist to tuple/list will correctly expand $SLURM_NODELIST
job_server = pp.Server(ncpus=0, ppservers=tuple(nodelist))

make sure the servers have enough time to start
time.sleep(5)

test function to execute on the remove nodes
def test_func():

print os.uname()

start the jobs
job_1 = job_server.submit(test_func,(),(),("os",))
job_2 = job_server.submit(test_func,(),(),("os",))

retrive the results
print job_1()
print job_2()

Cleanup
job_server.print_stats()
job_server.destroy()

6.4. Programming Examples 67

ClusterShell Documentation, Release 1.8

68 Chapter 6. Programming Guide

CHAPTER 7

Python API

ClusterShell public API autodoc.

NodeSet

Cluster node set module.

A module to efficiently deal with node sets and node groups. Instances of NodeSet provide similar operations than the
builtin set() type, see http://www.python.org/doc/lib/set-objects.html

Usage example

>>> # Import NodeSet class
... from ClusterShell.NodeSet import NodeSet
>>>
>>> # Create a new nodeset from string
... nodeset = NodeSet("cluster[1-30]")
>>> # Add cluster32 to nodeset
... nodeset.update("cluster32")
>>> # Remove from nodeset
... nodeset.difference_update("cluster[2-5,8-31]")
>>> # Print nodeset as a pdsh-like pattern
... print nodeset
cluster[1,6-7,32]
>>> # Iterate over node names in nodeset
... for node in nodeset:
... print node
cluster1
cluster6
cluster7
cluster32

69

http://www.python.org/doc/lib/set-objects.html

ClusterShell Documentation, Release 1.8

class ClusterShell.NodeSet.NodeSet(nodes=None, autostep=None, resolver=None,
fold_axis=None)

Iterable class of nodes with node ranges support.

NodeSet creation examples:

>>> nodeset = NodeSet() # empty NodeSet
>>> nodeset = NodeSet("cluster3") # contains only cluster3
>>> nodeset = NodeSet("cluster[5,10-42]")
>>> nodeset = NodeSet("cluster[0-10/2]")
>>> nodeset = NodeSet("cluster[0-10/2],othername[7-9,120-300]")

NodeSet provides methods like update(), intersection_update() or difference_update() methods, which conform
to the Python Set API. However, unlike RangeSet or standard Set, NodeSet is somewhat not so strict for conve-
nience, and understands NodeSet instance or NodeSet string as argument. Also, there is no strict definition of
one element, for example, it IS allowed to do:

>>> nodeset = NodeSet("blue[1-50]")
>>> nodeset.remove("blue[36-40]")
>>> print nodeset
blue[1-35,41-50]

Additionally, the NodeSet class recognizes the “extended string pattern” which adds support for union (special
character ”,”), difference (”!”), intersection (“&”) and symmetric difference (“^”) operations. String patterns are
read from left to right, by proceeding any character operators accordinately.

Extended string pattern usage examples:

>>> nodeset = NodeSet("node[0-10],node[14-16]") # union
>>> nodeset = NodeSet("node[0-10]!node[8-10]") # difference
>>> nodeset = NodeSet("node[0-10]&node[5-13]") # intersection
>>> nodeset = NodeSet("node[0-10]^node[5-13]") # xor

__and__(other)
Implements the & operator. So s & t returns a new nodeset with elements common to s and t.

__contains__(other)
Is node contained in NodeSet ?

__copy__()
Return a shallow copy of a NodeSet.

__delattr__
x.__delattr__(‘name’) <==> del x.name

__eq__(other)
NodeSet equality comparison.

__format__()
default object formatter

__ge__(other)
Report whether this nodeset contains another nodeset.

__getattribute__
x.__getattribute__(‘name’) <==> x.name

__getitem__(index)
Return the node at specified index or a subnodeset when a slice is specified.

70 Chapter 7. Python API

ClusterShell Documentation, Release 1.8

__getstate__()
Called when pickling: remove references to group resolver.

__gt__(other)
x.__gt__(y) <==> x>y

__hash__

__iand__(other)
Implements the &= operator. So s &= t returns nodeset s keeping only elements also found in t. (Python
version 2.5+ required)

__init__(nodes=None, autostep=None, resolver=None, fold_axis=None)
Initialize a NodeSet object.

The nodes argument may be a valid nodeset string or a NodeSet object. If no nodes are specified, an empty
NodeSet is created.

The optional autostep argument is passed to underlying RangeSet.RangeSet objects and aims to
enable and make use of the range/step syntax (eg. node[1-9/2]) when converting NodeSet to string
(using folding). To enable this feature, autostep must be set there to the min number of indexes that are
found at equal distance of each other inside a range before NodeSet starts to use this syntax. For example,
autostep=3 (or less) will pack n[2,4,6] into n[2-6/2]. Default autostep value is None which means
“inherit whenever possible”, ie. do not enable it unless set in NodeSet objects passed as nodes here or
during arithmetic operations. You may however use the special AUTOSTEP_DISABLED constant to force
turning off autostep feature.

The optional resolver argument may be used to override the group resolving behavior for this NodeSet
object. It can either be set to a NodeUtils.GroupResolver object, to the RESOLVER_NOGROUP
constant to disable any group resolution, or to None (default) to use standard NodeSet group resolver (see
set_std_group_resolver() at the module level to change it if needed).

nD nodeset only: the optional fold_axis parameter, if specified, set the public instance member fold_axis
to an iterable over nD 0-indexed axis integers. This parameter may be used to disengage some nD folding.
That may be useful as all cluster tools don’t support folded-nD nodeset syntax. Pass [0], for example, to
only fold along first axis (that is, to fold first dimension using [a-b] rangeset syntax whenever possible).
Using fold_axis ensures that rangeset won’t be folded on unspecified axis, but please note however, that
using fold_axis may lead to suboptimial folding, this is because NodeSet algorithms are optimized for
folding along all axis (default behavior).

__ior__(other)
Implements the |= operator. So s |= t returns nodeset s with elements added from t. (Python version
2.5+ required)

__isub__(other)
Implement the -= operator. So s -= t returns nodeset s after removing elements found in t. (Python
version 2.5+ required)

__iter__()
Iterator on single nodes as string.

__ixor__(other)
Implement the ^= operator. So s ^= t returns nodeset s after keeping all nodes that are in exactly one of
the nodesets. (Python version 2.5+ required)

__le__(other)
Report whether another nodeset contains this nodeset.

__len__()
Get the number of nodes in NodeSet.

7.1. NodeSet 71

ClusterShell Documentation, Release 1.8

__lt__(other)
x.__lt__(y) <==> x<y

__new__(S, ...) → a new object with type S, a subtype of T

__or__(other)
Implements the | operator. So s | t returns a new nodeset with elements from both s and t.

__reduce__()
helper for pickle

__reduce_ex__()
helper for pickle

__repr__

__setattr__
x.__setattr__(‘name’, value) <==> x.name = value

__setstate__(dic)
Called when unpickling: restore parser using non group resolver.

__sizeof__()→ int
size of object in memory, in bytes

__str__()
Get ranges-based pattern of node list.

__sub__(other)
Implement the - operator. So s - t returns a new nodeset with elements in s but not in t.

__subclasshook__()
Abstract classes can override this to customize issubclass().

This is invoked early on by abc.ABCMeta.__subclasscheck__(). It should return True, False or NotImple-
mented. If it returns NotImplemented, the normal algorithm is used. Otherwise, it overrides the normal
algorithm (and the outcome is cached).

__weakref__
list of weak references to the object (if defined)

__xor__(other)
Implement the ^ operator. So s ^ t returns a new NodeSet with nodes that are in exactly one of the
nodesets.

add(other)
Add node to NodeSet.

autostep
Get autostep value (property)

clear()
Remove all nodes from this nodeset.

contiguous()
Object-based NodeSet iterator on contiguous node sets.

Contiguous node set contains nodes with same pattern name and a contiguous range of indexes, like
foobar[1-100].

copy()
Return a shallow copy of a NodeSet.

72 Chapter 7. Python API

ClusterShell Documentation, Release 1.8

difference(other)
s.difference(t) returns a new NodeSet with elements in s but not in t.

difference_update(other, strict=False)
s.difference_update(t) removes from s all the elements found in t. If strict is True, raise KeyError if an
element in t cannot be removed from s.

classmethod fromall(groupsource=None, autostep=None, resolver=None)
Class method that returns a new NodeSet with all nodes from optional groupsource.

classmethod fromlist(nodelist, autostep=None, resolver=None)
Class method that returns a new NodeSet with nodes from provided list.

get_autostep()
Get autostep value (property)

groups(groupsource=None, noprefix=False)
Find node groups this nodeset belongs to.

Return a dictionary of the form: group_name => (group_nodeset, contained_nodeset)

Group names are always prefixed with “@”. If groupsource is provided, they are prefixed with “@group-
source:”, unless noprefix is True.

intersection(other)
s.intersection(t) returns a new set with elements common to s and t.

intersection_update(other)
s.intersection_update(t) returns nodeset s keeping only elements also found in t.

issubset(other)
Report whether another nodeset contains this nodeset.

issuperset(other)
Report whether this nodeset contains another nodeset.

nsiter()
Object-based NodeSet iterator on single nodes.

regroup(groupsource=None, autostep=None, overlap=False, noprefix=False)
Regroup nodeset using node groups.

Try to find fully matching node groups (within specified groupsource) and return a string that represents
this node set (containing these potential node groups). When no matching node groups are found, this
method returns the same result as str().

remove(elem)
Remove element elem from the nodeset. Raise KeyError if elem is not contained in the nodeset.

Raises KeyError – elem is not contained in the nodeset

set_autostep(val)
Set autostep value (property)

split(nbr)
Split the nodeset into nbr sub-nodesets (at most). Each sub-nodeset will have the same number of elements
more or less 1. Current nodeset remains unmodified.

>>> for nodeset in NodeSet("foo[1-5]").split(3):
... print nodeset
foo[1-2]
foo[3-4]
foo5

7.1. NodeSet 73

ClusterShell Documentation, Release 1.8

striter()
Iterator on single nodes as string.

symmetric_difference(other)
s.symmetric_difference(t) returns the symmetric difference of two nodesets as a new NodeSet.

(ie. all nodes that are in exactly one of the nodesets.)

symmetric_difference_update(other)
s.symmetric_difference_update(t) returns nodeset s keeping all nodes that are in exactly one of the node-
sets.

union(other)
s.union(t) returns a new set with elements from both s and t.

update(other)
s.update(t) returns nodeset s with elements added from t.

updaten(others)
s.updaten(list) returns nodeset s with elements added from given list.

ClusterShell.NodeSet.expand(pat)
Commodity function that expands a nodeset pattern into a list of nodes.

ClusterShell.NodeSet.fold(pat)
Commodity function that clean dups and fold provided pattern with ranges and “/step” support.

ClusterShell.NodeSet.grouplist(namespace=None, resolver=None)
Commodity function that retrieves the list of raw groups for a specified group namespace (or use default names-
pace). Group names are not prefixed with “@”.

ClusterShell.NodeSet.std_group_resolver()
Get the current resolver used for standard “@” group resolution.

ClusterShell.NodeSet.set_std_group_resolver(new_resolver)
Override the resolver used for standard “@” group resolution. The new resolver should be either an instance of
NodeUtils.GroupResolver or None. In the latter case, the group resolver is restored to the default one.

NodeUtils

Cluster nodes utility module

The NodeUtils module is a ClusterShell helper module that provides supplementary services to manage nodes in a
cluster. It is primarily designed to enhance the NodeSet module providing some binding support to external node
groups sources in separate namespaces (example of group sources are: files, jobs scheduler, custom scripts, etc.).

class ClusterShell.NodeUtils.GroupSource(name, groups=None, allgroups=None)
ClusterShell Group Source class.

A Group Source object defines resolv_map, resolv_list, resolv_all and optional resolv_reverse methods for node
group resolution. It is constituting a group resolution namespace.

__init__(name, groups=None, allgroups=None)
Initialize GroupSource

Parameters

• name – group source name

• groups – group to nodes dict

• allgroups – optional _all groups_ result (string)

74 Chapter 7. Python API

ClusterShell Documentation, Release 1.8

__weakref__
list of weak references to the object (if defined)

resolv_all()
Return the content of all groups as defined by this GroupSource

resolv_list()
Return a list of all group names for this group source

resolv_map(group)
Get nodes from group group

resolv_reverse(node)
Return the group name matching the provided node.

class ClusterShell.NodeUtils.GroupResolver(default_source=None, illegal_chars=None)
Base class GroupResolver that aims to provide node/group resolution from multiple GroupSources.

A GroupResolver object might be initialized with a default GroupSource object, that is later used when group
resolution is requested with no source information. As of version 1.7, a set of illegal group characters may also
be provided for sanity check (raising GroupResolverIllegalCharError when found).

__init__(default_source=None, illegal_chars=None)
Lazy initialization of a new GroupResolver object.

__weakref__
list of weak references to the object (if defined)

add_source(*args)
Add a GroupSource to this resolver.

all_nodes(namespace=None)
Find all nodes. You may specify an optional namespace.

default_source_name
Get default source name of resolver.

group_nodes(group, namespace=None)
Find nodes for specified group name and optional namespace.

grouplist(namespace=None)
Get full group list. You may specify an optional namespace.

has_node_groups(namespace=None)
Return whether finding group list for a specified node is supported by the resolver (in optional namespace).

node_groups(node, namespace=None)
Find group list for specified node and optional namespace.

set_verbosity(*args)
Set debugging verbosity value (DEPRECATED: use logging.DEBUG).

sources(*args)
Get the list of all resolver source names.

class ClusterShell.NodeUtils.GroupResolverConfig(filenames, illegal_chars=None)
GroupResolver class that is able to automatically setup its GroupSource’s from a configuration file. This is the
default resolver for NodeSet.

__init__(filenames, illegal_chars=None)
Lazy init GroupResolverConfig object from filenames.

7.2. NodeUtils 75

ClusterShell Documentation, Release 1.8

RangeSet

Cluster range set module.

Instances of RangeSet provide similar operations than the builtin set type, extended to support cluster ranges-like
format and stepping support (“0-8/2”).

class ClusterShell.RangeSet.RangeSet(pattern=None, autostep=None)
Mutable set of cluster node indexes featuring a fast range-based API.

This class aims to ease the management of potentially large cluster range sets and is used by the NodeSet
class.

RangeSet basic constructors:

>>> rset = RangeSet() # empty RangeSet
>>> rset = RangeSet("5,10-42") # contains 5, 10 to 42
>>> rset = RangeSet("0-10/2") # contains 0, 2, 4, 6, 8, 10

Also any iterable of integers can be specified as first argument:

>>> RangeSet([3, 6, 8, 7, 1])
1,3,6-8
>>> rset2 = RangeSet(rset)

Padding of ranges (eg. “003-009”) can be managed through a public RangeSet instance variable named padding.
It may be changed at any time. Padding is a simple display feature per RangeSet object, thus current padding
value is not taken into account when computing set operations. RangeSet is itself an iterator over its items as
integers (instead of strings). To iterate over string items with optional padding, you can use the RangeSet.
striter(): method.

RangeSet provides methods like RangeSet.union(), RangeSet.intersection(), RangeSet.
difference(), RangeSet.symmetric_difference() and their in-place versions RangeSet.
update(), RangeSet.intersection_update(), RangeSet.difference_update(),
RangeSet.symmetric_difference_update() which conform to the Python Set API.

__and__(other)
Return the intersection of two RangeSets as a new RangeSet.

(I.e. all elements that are in both sets.)

__contains__(element)
Report whether an element is a member of a RangeSet. Element can be either another RangeSet object, a
string or an integer.

Called in response to the expression element in self.

__copy__()
Return a shallow copy of a RangeSet.

__eq__(other)
RangeSet equality comparison.

__ge__(other)
Report whether this RangeSet contains another set.

__getitem__(index)
Return the element at index or a subrange when a slice is specified.

__iand__(other)
Update a RangeSet with the intersection of itself and another.

76 Chapter 7. Python API

ClusterShell Documentation, Release 1.8

__init__(pattern=None, autostep=None)
Initialize RangeSet object.

Parameters

• pattern – optional string pattern

• autostep – optional autostep threshold

__ior__(other)
Update a RangeSet with the union of itself and another.

__isub__(other)
Remove all elements of another set from this RangeSet.

__iter__()
Iterate over each element in RangeSet.

__ixor__(other)
Update a RangeSet with the symmetric difference of itself and another.

__le__(other)
Report whether another set contains this RangeSet.

__or__(other)
Return the union of two RangeSets as a new RangeSet.

(I.e. all elements that are in either set.)

__reduce__()
Return state information for pickling.

__repr__()
Get comma-separated range-based string (x-y/step format).

__setstate__(dic)
called upon unpickling

__str__()
Get comma-separated range-based string (x-y/step format).

__sub__(other)
Return the difference of two RangeSets as a new RangeSet.

(I.e. all elements that are in this set and not in the other.)

__xor__(other)
Return the symmetric difference of two RangeSets as a new RangeSet.

(I.e. all elements that are in exactly one of the sets.)

add(element, pad=0)
Add an element to a RangeSet. This has no effect if the element is already present.

add_range(start, stop, step=1, pad=0)
Add a range (start, stop, step and padding length) to RangeSet. Like the Python built-in function range(),
the last element is the largest start + i * step less than stop.

autostep
autostep threshold public instance attribute

clear()
Remove all elements from this RangeSet.

7.3. RangeSet 77

ClusterShell Documentation, Release 1.8

contiguous()
Object-based iterator over contiguous range sets.

copy()
Return a shallow copy of a RangeSet.

difference(other)
Return the difference of two RangeSets as a new RangeSet.

(I.e. all elements that are in this set and not in the other.)

difference_update(other, strict=False)
Remove all elements of another set from this RangeSet.

If strict is True, raise KeyError if an element cannot be removed. (strict is a RangeSet addition)

dim()
Get the number of dimensions of this RangeSet object. Common method with RangeSetND. Here, it will
always return 1 unless the object is empty, in that case it will return 0.

discard(element)
Remove element from the RangeSet if it is a member.

If the element is not a member, do nothing.

classmethod fromlist(rnglist, autostep=None)
Class method that returns a new RangeSet with ranges from provided list.

classmethod fromone(index, pad=0, autostep=None)
Class method that returns a new RangeSet of one single item or a single range (from integer or slice object).

get_autostep()
Get autostep value (property)

intersection(other)
Return the intersection of two RangeSets as a new RangeSet.

(I.e. all elements that are in both sets.)

intersection_update(other)
Update a RangeSet with the intersection of itself and another.

issubset(other)
Report whether another set contains this RangeSet.

issuperset(other)
Report whether this RangeSet contains another set.

remove(element)
Remove an element from a RangeSet; it must be a member.

Parameters element – the element to remove

Raises

• KeyError – element is not contained in RangeSet

• ValueError – element is not castable to integer

set_autostep(val)
Set autostep value (property)

slices()
Iterate over RangeSet ranges as Python slice objects.

78 Chapter 7. Python API

ClusterShell Documentation, Release 1.8

split(nbr)
Split the rangeset into nbr sub-rangesets (at most). Each sub-rangeset will have the same number of
elements more or less 1. Current rangeset remains unmodified. Returns an iterator.

>>> RangeSet("1-5").split(3)
RangeSet("1-2")
RangeSet("3-4")
RangeSet("foo5")

striter()
Iterate over each (optionally padded) string element in RangeSet.

symmetric_difference(other)
Return the symmetric difference of two RangeSets as a new RangeSet.

(ie. all elements that are in exactly one of the sets.)

symmetric_difference_update(other)
Update a RangeSet with the symmetric difference of itself and another.

union(other)
Return the union of two RangeSets as a new RangeSet.

(I.e. all elements that are in either set.)

union_update(other)
Update a RangeSet with the union of itself and another.

update(iterable)
Add all integers from an iterable (such as a list).

updaten(rangesets)
Update a rangeset with the union of itself and several others.

RangeSetND

class ClusterShell.RangeSet.RangeSetND(args=None, pads=None, autostep=None,
copy_rangeset=True)

Build a N-dimensional RangeSet object.

Warning: You don’t usually need to use this class directly, use NodeSet instead that has ND support.

Empty constructor:

RangeSetND()

Build from a list of list of RangeSet objects:

RangeSetND([[rs1, rs2, rs3, ...], ...])

Strings are also supported:

RangeSetND([["0-3", "4-10", ...], ...])

Integers are also supported:

7.4. RangeSetND 79

ClusterShell Documentation, Release 1.8

RangeSetND([(0, 4), (0, 5), (1, 4), (1, 5), ...]

__and__(other)
Implements the & operator. So s & t returns a new object with elements common to s and t.

__contains__(*args, **kwargs)
Report whether an element is a member of a RangeSetND. Element can be either another RangeSetND
object, a string or an integer.

Called in response to the expression element in self.

__copy__(*args, **kwargs)
Return a new, mutable shallow copy of a RangeSetND.

__eq__(other)
RangeSetND equality comparison.

__ge__(*args, **kwargs)
Report whether this RangeSetND contains another RangeSetND.

__getitem__(*args, **kwargs)
Return the element at index or a subrange when a slice is specified.

__iand__(other)
Implements the &= operator. So s &= t returns object s keeping only elements also found in t (Python
2.5+ required).

__init__(args=None, pads=None, autostep=None, copy_rangeset=True)
RangeSetND initializer

All parameters are optional.

Parameters

• args – generic “list of list” input argument (default is None)

• pads – list of 0-padding length (default is to not pad any dimensions)

• autostep – autostep threshold (use range/step notation if more than #autostep items
meet the condition) - default is off (None)

• copy_rangeset – (advanced) if set to False, do not copy RangeSet objects from args
(transfer ownership), which is faster. In that case, you should not modify these objects
afterwards (default is True).

__ior__(other)
Update a RangeSetND with the union of itself and another.

__isub__(other)
Remove all elements of another set from this RangeSetND.

__ixor__(other)
Implement the ^= operator. So s ^= t returns object s after keeping all items that are in exactly one of
the RangeSetND (Python 2.5+ required).

__le__(other)
Report whether another set contains this RangeSetND.

__len__()
Count unique elements in N-dimensional rangeset.

__or__(other)
Return the union of two RangeSetNDs as a new RangeSetND.

80 Chapter 7. Python API

ClusterShell Documentation, Release 1.8

(I.e. all elements that are in either set.)

__str__(*args, **kwargs)
String representation of N-dimensional RangeSet.

__sub__(other)
Return the difference of two RangeSetNDs as a new RangeSetND.

(I.e. all elements that are in this set and not in the other.)

__weakref__
list of weak references to the object (if defined)

__xor__(other)
Implement the ^ operator. So s ^ t returns a new RangeSetND with nodes that are in exactly one of the
RangeSetND.

autostep
autostep threshold public instance attribute

contiguous(*args, **kwargs)
Object-based iterator over contiguous range sets.

copy(*args, **kwargs)
Return a new, mutable shallow copy of a RangeSetND.

difference(other)
s.difference(t) returns a new object with elements in s but not in t.

difference_update(other, strict=False)
Remove all elements of another set from this RangeSetND.

If strict is True, raise KeyError if an element cannot be removed (strict is a RangeSet addition)

dim()
Get the current number of dimensions of this RangeSetND object. Return 0 when object is empty.

fold(*args, **kwargs)
Explicit folding call. Please note that folding of RangeSetND nD vectors are automatically managed, so
you should not have to call this method. It may be still useful in some extreme cases where the Range-
SetND is heavily modified.

get_autostep()
Get autostep value (property)

intersection(other)
s.intersection(t) returns a new object with elements common to s and t.

intersection_update(other)
s.intersection_update(t) returns nodeset s keeping only elements also found in t.

issubset(other)
Report whether another set contains this RangeSetND.

issuperset(*args, **kwargs)
Report whether this RangeSetND contains another RangeSetND.

iter_padding(*args, **kwargs)
Iterate through individual items as tuples with padding info.

pads()
Get a tuple of padding length info for each dimension.

7.4. RangeSetND 81

ClusterShell Documentation, Release 1.8

class precond_fold
Decorator to ease internal folding management

__weakref__
list of weak references to the object (if defined)

RangeSetND.set_autostep(val)
Set autostep value (property)

RangeSetND.symmetric_difference(other)
s.symmetric_difference(t) returns the symmetric difference of two objects as a new Range-
SetND.

(ie. all items that are in exactly one of the RangeSetND.)

RangeSetND.symmetric_difference_update(other)
s.symmetric_difference_update(t) returns RangeSetND s keeping all nodes that are in ex-
actly one of the objects.

RangeSetND.union(other)
Return the union of two RangeSetNDs as a new RangeSetND.

(I.e. all elements that are in either set.)

RangeSetND.union_update(other)
Add all RangeSetND elements to this RangeSetND.

RangeSetND.update(other)
Add all RangeSetND elements to this RangeSetND.

RangeSetND.veclist
Get folded veclist

RangeSetND.vectors()
Get underlying RangeSet vectors

MsgTree

MsgTree

ClusterShell message tree module. The purpose of MsgTree is to provide a shared message tree for storing message
lines received from ClusterShell Workers (for example, from remote cluster commands). It should be efficient, in term
of algorithm and memory consumption, especially when remote messages are the same.

class ClusterShell.MsgTree.MsgTree(mode=0)
MsgTree maps key objects to multi-lines messages.

MsgTree is a mutable object. Keys are almost arbitrary values (must be hashable). Message lines are organized
as a tree internally. MsgTree provides low memory consumption especially on a cluster when all nodes return
similar messages. Also, the gathering of messages is done automatically.

__getitem__(key)
Return the message of MsgTree with specified key. Raises a KeyError if key is not in the MsgTree.

__init__(mode=0)
MsgTree initializer

The ‘mode’ parameter should be set to one of the following constant:

MODE_DEFER: all messages are processed immediately, saving memory from duplicate message lines,
but keys are associated to tree elements usually later when tree is first “walked”, saving useless state

82 Chapter 7. Python API

ClusterShell Documentation, Release 1.8

updates and CPU time. Once the tree is “walked” for the first time, its mode changes to MODE_SHIFT to
keep track of further tree updates. This is the default mode.

MODE_SHIFT: all keys and messages are processed immediately, it is more CPU time consuming as
MsgTree full state is updated at each add() call.

MODE_TRACE: all keys and messages and processed immediately, and keys are kept for each message
element of the tree. The special method walk_trace() is then available to walk all elements of the tree.

__iter__()
Return an iterator over MsgTree’s keys.

__len__()
Return the number of keys contained in the MsgTree.

__weakref__
list of weak references to the object (if defined)

add(key, msgline)
Add a message line (in bytes) associated with the given key to the MsgTree.

clear()
Remove all items from the MsgTree.

get(key, default=None)
Return the message for key if key is in the MsgTree, else default. If default is not given, it defaults to
None, so that this method never raises a KeyError.

items(match=None, mapper=None)
Return (key, message) for each key of the MsgTree.

keys()
Return an iterator over MsgTree’s keys.

messages(match=None)
Return an iterator over MsgTree’s messages.

remove(match=None)
Modify the tree by removing any matching key references from the messages tree.

Example of use:

>>> msgtree.remove(lambda k: k > 3)

walk(match=None, mapper=None)
Walk the tree. Optionally filter keys on match parameter, and optionally map resulting keys with mapper
function. Return an iterator over (message, keys) tuples for each different message in the tree.

walk_trace(match=None, mapper=None)
Walk the tree in trace mode. Optionally filter keys on match parameter, and optionally map resulting keys
with mapper function. Return an iterator over 4-length tuples (msgline, keys, depth, num_children).

Task

ClusterShell Task module.

Simple example of use:

7.6. Task 83

ClusterShell Documentation, Release 1.8

>>> from ClusterShell.Task import task_self, NodeSet
>>>
>>> # get task associated with calling thread
... task = task_self()
>>>
>>> # add a command to execute on distant nodes
... task.shell("/bin/uname -r", nodes="tiger[1-30,35]")
<ClusterShell.Worker.Ssh.WorkerSsh object at 0x7f41da71b890>
>>>
>>> # run task in calling thread
... task.run()
>>>
>>> # get results
... for output, nodelist in task.iter_buffers():
... print '%s: %s' % (NodeSet.fromlist(nodelist), output)
...

class ClusterShell.Task.Task(thread=None, defaults=None)
The Task class defines an essential ClusterShell object which aims to execute commands in parallel and easily
get their results.

More precisely, a Task object manages a coordinated (ie. with respect of its current parameters) collection
of independent parallel Worker objects. See ClusterShell.Worker.Worker for further details on ClusterShell
Workers.

Always bound to a specific thread, a Task object acts like a “thread singleton”. So most of the time, and even
more for single-threaded applications, you can get the current task object with the following top-level Task
module function:

>>> task = task_self()

However, if you want to create a task in a new thread, use:

>>> task = Task()

To create or get the instance of the task associated with the thread object thr (threading.Thread):

>>> task = Task(thread=thr)

To submit a command to execute locally within task, use:

>>> task.shell("/bin/hostname")

To submit a command to execute to some distant nodes in parallel, use:

>>> task.shell("/bin/hostname", nodes="tiger[1-20]")

The previous examples submit commands to execute but do not allow result interaction during their execution.
For your program to interact during command execution, it has to define event handlers that will listen for local
or remote events. These handlers are based on the EventHandler class, defined in ClusterShell.Event. The
following example shows how to submit a command on a cluster with a registered event handler:

>>> task.shell("uname -r", nodes="node[1-9]", handler=MyEventHandler())

Run task in its associated thread (will block only if the calling thread is the task associated thread):

84 Chapter 7. Python API

ClusterShell Documentation, Release 1.8

>>> task.resume()

or:

>>> task.run()

You can also pass arguments to task.run() to schedule a command exactly like in task.shell(), and run it:

>>> task.run("hostname", nodes="tiger[1-20]", handler=MyEventHandler())

A common need is to set a maximum delay for command execution, especially when the command time is not
known. Doing this with ClusterShell Task is very straighforward. To limit the execution time on each node, use
the timeout parameter of shell() or run() methods to set a delay in seconds, like:

>>> task.run("check_network.sh", nodes="tiger[1-20]", timeout=30)

You can then either use Task’s iter_keys_timeout() method after execution to see on what nodes the command
has timed out, or listen for ev_close() events in your event handler and check the timedout boolean.

To get command result, you can either use Task’s iter_buffers() method for standard output, iter_errors() for
standard error after command execution (common output contents are automatically gathered), or you can listen
for ev_read() events in your event handler and get live command output.

To get command return codes, you can either use Task’s iter_retcodes(), node_retcode() and max_retcode()
methods after command execution, or listen for ev_hup() events in your event handler.

__init__(thread=None, defaults=None)
Initialize a Task, creating a new non-daemonic thread if needed.

static __new__(thread=None, defaults=None)
For task bound to a specific thread, this class acts like a “thread singleton”, so new style class is used and
new object are only instantiated if needed.

__weakref__
list of weak references to the object (if defined)

abort(kill=False)
Abort a task. Aborting a task removes (and stops when needed) all workers. If optional parameter kill is
True, the task object is unbound from the current thread, so calling task_self() creates a new Task object.

copy(source, dest, nodes, **kwargs)
Copy local file to distant nodes.

default(default_key, def_val=None)
Return per-task value for key from the “default” dictionary. See set_default() for a list of reserved task
default_keys.

default_excepthook(exc_type, exc_value, tb)
Default excepthook for a newly Task. When an exception is raised and uncaught on Task thread, ex-
cepthook is called, which is default_excepthook by default. Once excepthook overriden, you can still call
default_excepthook if needed.

flush_buffers()
Flush all task messages (from all task workers).

flush_errors()
Flush all task error messages (from all task workers).

info(info_key, def_val=None)
Return per-task information. See set_info() for a list of reserved task info_keys.

7.6. Task 85

ClusterShell Documentation, Release 1.8

iter_buffers(match_keys=None)
Iterate over buffers, returns a tuple (buffer, keys). For remote workers (Ssh), keys are list of nodes. In
that case, you should use NodeSet.fromlist(keys) to get a NodeSet instance (which is more convenient and
efficient):

Optional parameter match_keys add filtering on these keys.

Usage example:

>>> for buffer, nodelist in task.iter_buffers():
... print NodeSet.fromlist(nodelist)
... print buffer

iter_errors(match_keys=None)
Iterate over error buffers, returns a tuple (buffer, keys).

See iter_buffers().

iter_keys_timeout()
Iterate over timed out keys (ie. nodes).

iter_retcodes(match_keys=None)
Iterate over return codes of command-based workers, returns a tuple (rc, keys).

Optional parameter match_keys add filtering on these keys.

If the process exits normally, the return code is its exit status. If the process is terminated by a
signal, the return code is 128 + signal number.

join()
Suspend execution of the calling thread until the target task terminates, unless the target task has already
terminated.

key_buffer(key)
Get buffer for a specific key. When the key is associated to multiple workers, the resulting buffer will
contain all workers content that may overlap. This method returns an empty buffer if key is not found in
any workers.

key_error(key)
Get error buffer for a specific key. When the key is associated to multiple workers, the resulting buffer
will contain all workers content that may overlap. This method returns an empty error buffer if key is not
found in any workers.

key_retcode(key)
Return return code for a specific key. When the key is associated to multiple workers, return the max return
code from these workers. Raises a KeyError if key is not found in any finished workers.

load_topology(topology_file)
Load propagation topology from provided file.

On success, task.topology is set to a corresponding TopologyTree instance.

On failure, task.topology is left untouched and a TopologyError exception is raised.

max_retcode()

Get max return code encountered during last run

or None in the following cases:

• all commands timed out,

• no command-based worker was executed.

86 Chapter 7. Python API

ClusterShell Documentation, Release 1.8

If the process exits normally, the return code is its exit status. If the process is terminated by a
signal, the return code is 128 + signal number.

node_buffer(key)
Get buffer for a specific key. When the key is associated to multiple workers, the resulting buffer will
contain all workers content that may overlap. This method returns an empty buffer if key is not found in
any workers.

node_error(key)
Get error buffer for a specific key. When the key is associated to multiple workers, the resulting buffer
will contain all workers content that may overlap. This method returns an empty error buffer if key is not
found in any workers.

node_retcode(key)
Return return code for a specific key. When the key is associated to multiple workers, return the max return
code from these workers. Raises a KeyError if key is not found in any finished workers.

num_timeout()
Return the number of timed out “keys” (ie. nodes).

port(handler=None, autoclose=False)
Create a new task port. A task port is an abstraction object to deliver messages reliably between tasks.

Basic rules:

• A task can send messages to another task port (thread safe).

• A task can receive messages from an acquired port either by setting up a notification mechanism
or using a polling mechanism that may block the task waiting for a message sent on the port.

• A port can be acquired by one task only.

If handler is set to a valid EventHandler object, the port is a send-once port, ie. a message sent to this port
generates an ev_msg event notification issued the port’s task. If handler is not set, the task can only receive
messages on the port by calling port.msg_recv().

rcopy(source, dest, nodes, **kwargs)
Copy distant file or directory to local node.

remove_port(*args, **kwargs)
Close and remove a port from task previously created with port().

resume(timeout=None)
Resume task. If task is task_self(), workers are executed in the calling thread so this method will block
until all (non-autoclosing) workers have finished. This is always the case for a single-threaded application
(eg. which doesn’t create other Task() instance than task_self()). Otherwise, the current thread doesn’t
block. In that case, you may then want to call task_wait() to wait for completion.

Warning: the timeout parameter can be used to set an hard limit of task execution time (in seconds). In that
case, a TimeoutError exception is raised if this delay is reached. Its value is 0 by default, which means no
task time limit (TimeoutError is never raised). In order to set a maximum delay for individual command
execution, you should use Task.shell()’s timeout parameter instead.

run(command=None, **kwargs)
With arguments, it will schedule a command exactly like a Task.shell() would have done it and run it. This
is the easiest way to simply run a command.

>>> task.run("hostname", nodes="foo")

Without argument, it starts all outstanding actions. It behaves like Task.resume().

7.6. Task 87

ClusterShell Documentation, Release 1.8

>>> task.shell("hostname", nodes="foo")
>>> task.shell("hostname", nodes="bar")
>>> task.run()

When used with a command, you can set a maximum delay of individual command execution with the
help of the timeout parameter (see Task.shell’s parameters). You can then listen for ev_close() events and
check the timedout boolean in your Worker event handlers, or use num_timeout() or iter_keys_timeout()
afterwards. But, when used as an alias to Task.resume(), the timeout parameter sets an hard limit of task
execution time. In that case, a TimeoutError exception is raised if this delay is reached.

running()
Return True if the task is running.

schedule(*args, **kwargs)
Schedule a worker for execution, ie. add worker in task running loop. Worker will start processing imme-
diately if the task is running (eg. called from an event handler) or as soon as the task is started otherwise.
Only useful for manually instantiated workers, for example:

>>> task = task_self()
>>> worker = WorkerSsh("node[2-3]", None, 10, command="/bin/ls")
>>> task.schedule(worker)
>>> task.resume()

set_default(default_key, value)
Set task value for specified key in the dictionary “default”. Users may store their own task-specific key,
value pairs using this method and retrieve them with default().

Task default_keys are:

• “stderr”: Boolean value indicating whether to enable stdout/stderr separation when using
task.shell(), if not specified explicitly (default: False).

• “stdin”: Boolean value indicating whether to enable stdin when using task.shell(), if not explicitly
specified (default: True)

• “stdout_msgtree”: Whether to instantiate standard output MsgTree for automatic internal gather-
ing of result messages coming from Workers (default: True).

• “stderr_msgtree”: Same for stderr (default: True).

• “engine”: Used to specify an underlying Engine explicitly (default: “auto”).

• “port_qlimit”: Size of port messages queue (default: 32).

• “worker”: Worker-based class used when spawning workers through shell()/run().

Unlike set_info(), when called from the task’s thread or not, set_default() immediately updates
the underlying dictionary in a thread-safe manner. This method doesn’t wake up the engine when
called.

set_info(*args, **kwargs)
Set task value for a specific key information. Key, value pairs can be passed to the engine and/or workers.
Users may store their own task-specific info key, value pairs using this method and retrieve them with
info().

The following example changes the fanout value to 128:

>>> task.set_info('fanout', 128)

The following example enables debug messages:

88 Chapter 7. Python API

ClusterShell Documentation, Release 1.8

>>> task.set_info('debug', True)

Task info_keys are:

• “debug”: Boolean value indicating whether to enable library debugging messages (default: False).

• “print_debug”: Debug messages processing function. This function takes 2 arguments: the task
instance and the message string (default: an internal function doing standard print).

• “fanout”: Max number of registered clients in Engine at a time (default: 64).

• “grooming_delay”: Message maximum end-to-end delay requirement used for traffic grooming,
in seconds as float (default: 0.5).

• “connect_timeout”: Time in seconds to wait for connecting to remote host before aborting (de-
fault: 10).

• “command_timeout”: Time in seconds to wait for a command to complete before aborting (de-
fault: 0, which means unlimited).

Unlike set_default(), the underlying info dictionary is only modified from the task’s thread. So
calling set_info() from another thread leads to queueing the request for late apply (at run time)
using the task dispatch port. When received, the request wakes up the engine when the task is
running and the info dictionary is then updated.

shell(command, **kwargs)
Schedule a shell command for local or distant parallel execution. This essential method creates a local
or remote Worker (depending on the presence of the nodes parameter) and immediately schedules it for
execution in task’s runloop. So, if the task is already running (ie. called from an event handler), the
command is started immediately, assuming current execution contraintes are met (eg. fanout value). If the
task is not running, the command is not started but scheduled for late execution. See resume() to start task
runloop.

The following optional parameters are passed to the underlying local or remote Worker constructor:

•handler: EventHandler instance to notify (on event) – default is no handler (None)

•timeout: command timeout delay expressed in second using a floating point value – default is unlim-
ited (None)

•autoclose: if set to True, the underlying Worker is automatically aborted as soon as all other non-
autoclosing task objects (workers, ports, timers) have finished – default is False

•stderr: separate stdout/stderr if set to True – default is False.

•stdin: enable stdin if set to True or prevent its use otherwise – default is True.

Local usage::

task.shell(command [, key=key] [, handler=handler] [, timeout=secs] [, auto-
close=enable_autoclose] [, stderr=enable_stderr][, stdin=enable_stdin]))

Distant usage::

task.shell(command, nodes=nodeset [, handler=handler] [, timeout=secs], [, auto-
close=enable_autoclose] [, tree=None|False|True] [, remote=False|True] [, stderr=enable_stderr][,
stdin=enable_stdin]))

Example:

7.6. Task 89

ClusterShell Documentation, Release 1.8

>>> task = task_self()
>>> task.shell("/bin/date", nodes="node[1-2345]")
>>> task.resume()

suspend()
Suspend task execution. This method may be called from another task (thread-safe). The function returns
False if the task cannot be suspended (eg. it’s not running), or returns True if the task has been successfully
suspended. To resume a suspended task, use task.resume().

class tasksyncmethod
Class encapsulating a function that checks if the calling task is running or is the current task, and allowing
it to be used as a decorator making the wrapped task method thread-safe.

__weakref__
list of weak references to the object (if defined)

Task.timer(fire, handler, interval=-1.0, autoclose=False)
Create a timer bound to this task that fires at a preset time in the future by invoking the ev_timer() method
of ‘handler’ (provided EventHandler object). Timers can fire either only once or repeatedly at fixed time
intervals. Repeating timers can also have their next firing time manually adjusted.

The mandatory parameter ‘fire’ sets the firing delay in seconds.

The optional parameter ‘interval’ sets the firing interval of the timer. If not specified, the timer fires once
and then is automatically invalidated.

Time values are expressed in second using floating point values. Precision is implementation (and system)
dependent.

The optional parameter ‘autoclose’, if set to True, creates an “autoclosing” timer: it will be automati-
cally invalidated as soon as all other non-autoclosing task’s objects (workers, ports, timers) have finished.
Default value is False, which means the timer will retain task’s runloop until it is invalidated.

Return a new EngineTimer instance.

See ClusterShell.Engine.Engine.EngineTimer for more details.

classmethod Task.wait(from_thread)
Class method that blocks calling thread until all tasks have finished (from a ClusterShell point of view, for
instance, their task.resume() return). It doesn’t necessarly mean that associated threads have finished.

ClusterShell.Task.task_self(defaults=None)
Return the current Task object, corresponding to the caller’s thread of control (a Task object is always bound to a
specific thread). This function provided as a convenience is available in the top-level ClusterShell.Task package
namespace.

ClusterShell.Task.task_wait()
Suspend execution of the calling thread until all tasks terminate, unless all tasks have already terminated. This
function is provided as a convenience and is available in the top-level ClusterShell.Task package namespace.

ClusterShell.Task.task_terminate()
Destroy the Task instance bound to the current thread. A next call to task_self() will create a new Task object.
Not to be called from a signal handler. This function provided as a convenience is available in the top-level
ClusterShell.Task package namespace.

ClusterShell.Task.task_cleanup()
Cleanup routine to destroy all created tasks. This function provided as a convenience is available in the top-
level ClusterShell.Task package namespace. This is mainly used for testing purposes and should be avoided
otherwise. task_cleanup() may be called from any threads but not from a signal handler.

90 Chapter 7. Python API

ClusterShell Documentation, Release 1.8

Defaults

ClusterShell Defaults module.

Manage library defaults.

class ClusterShell.Defaults.Defaults(filenames)
Class used to manipulate ClusterShell defaults.

The following attributes may be read at any time and also changed programmatically, for most of them before
ClusterShell objects are initialized (like Task):

•stderr (boolean; default is False)

•stdin (boolean; default is True)

•stdout_msgtree (boolean; default is True)

•stderr_msgtree (boolean; default is True)

•engine (string; default is 'auto')

•port_qlimit (integer; default is 100)

•local_workername (string; default is 'exec')

•distant_workername (string; default is 'ssh')

•debug (boolean; default is False)

•print_debug (function; default is internal)

•fanout (integer; default is 64)

•grooming_delay (float; default is 0.25)

•connect_timeout (float; default is 10)

•command_timeout (float; default is 0)

Example of use:

>>> from ClusterShell.Defaults import DEFAULTS
>>> from ClusterShell.Task import task_self
>>> # Change default distant worker to rsh (WorkerRsh)
... DEFAULTS.distant_workername = 'rsh'
>>> task = task_self()
>>> task.run("uname -r", nodes="cs[01-03]")
<ClusterShell.Worker.Rsh.WorkerRsh object at 0x1f4a410>
>>> list((str(msg), nodes) for msg, nodes in task.iter_buffers())
[('3.10.0-229.7.2.el7.x86_64', ['cs02', 'cs01', 'cs03'])]

The library default values of all of the above attributes may be changed using the defaults.conf configuration
file, except for print_debug (cf. Library Defaults). An example defaults.conf file should be included with
ClusterShell. Remember that this could affect all applications using ClusterShell.

ClusterShell.Defaults.DEFAULTS

Globally accessible Defaults object.

Event

ClusterShell Event handling.

7.7. Defaults 91

ClusterShell Documentation, Release 1.8

This module contains the base class EventHandler which defines a simple interface to handle events generated by
Worker, EventTimer and EventPort objects.

class ClusterShell.Event.EventHandler
ClusterShell EventHandler interface.

Derived class should implement any of the following methods to listen for Worker, EventTimer or
EventPort selected events. If not implemented, the default behavior is to do nothing.

ev_start(worker)
Called to indicate that a worker has just started.

Parameters worker – Worker derived object

ev_pickup(worker, node)
Called for each node to indicate that a worker command for a specific node (or key) has just started.

Warning: The signature of EventHandler.ev_pickup() changed in ClusterShell 1.8, please
update your EventHandler derived classes and add the node argument.

New in version 1.7.

Parameters

• worker – Worker derived object

• node – node (or key)

ev_read(worker, node, sname, msg)
Called to indicate that a worker has data to read from a specific node (or key).

Warning: The signature of EventHandler.ev_read() changed in ClusterShell 1.8, please
update your EventHandler derived classes and add the node, sname and msg arguments.

Parameters

• worker – Worker derived object

• node – node (or key)

• sname – stream name

• msg – message

ev_written(worker, node, sname, size)
Called to indicate that some writing has been done by the worker to a node on a given stream. This event
is only generated when write() is previously called on the worker.

This handler may be called very often depending on the number of target nodes, the amount of data to
write and the block size used by the worker.

New in version 1.7.

Parameters

• worker – Worker derived object

• node – node (or) key

• sname – stream name

92 Chapter 7. Python API

ClusterShell Documentation, Release 1.8

• size – amount of bytes that has just been written to node/stream associated with this
event

ev_hup(worker, node, rc)
Called for each node to indicate that a worker command for a specific node has just finished.

Warning: The signature of EventHandler.ev_hup() changed in ClusterShell 1.8, please update
your EventHandler derived classes to add the node and rc arguments.

Parameters

• worker – Worker derived object

• node – node (or key)

• rc – command return code (or None if the worker doesn’t support command return codes)

ev_close(worker, timedout)
Called to indicate that a worker has just finished.

Warning: The signature of EventHandler.ev_close() changed in ClusterShell 1.8, please
update your EventHandler derived classes to add the timedout argument. Please use this argument
instead of the method ev_timeout.

Parameters

• worker – Worker derived object

• timedout – boolean set to True if the worker has timed out

ev_msg(port, msg)
Called to indicate that a message has been received on an EnginePort.

Used to deliver messages reliably between tasks.

Parameters

• port – EnginePort object on which a message has been received

• msg – the message object received

ev_timer(timer)
Called to indicate that a timer is firing.

Parameters timer – EngineTimer object that is firing

EngineTimer

class ClusterShell.Engine.Engine.EngineTimer(fire_delay, interval, autoclose, handler)
Concrete class EngineTimer

An EngineTimer object represents a timer bound to an engine that fires at a preset time in the future. Timers can
fire either only once or repeatedly at fixed time intervals. Repeating timers can also have their next firing time
manually adjusted.

7.9. EngineTimer 93

ClusterShell Documentation, Release 1.8

A timer is not a real-time mechanism; it fires when the task’s underlying engine to which the timer has been
added is running and able to check if the timer’s firing time has passed.

__delattr__
x.__delattr__(‘name’) <==> del x.name

__format__()
default object formatter

__getattribute__
x.__getattribute__(‘name’) <==> x.name

__hash__

__new__(S, ...) → a new object with type S, a subtype of T

__reduce__()
helper for pickle

__reduce_ex__()
helper for pickle

__repr__

__setattr__
x.__setattr__(‘name’, value) <==> x.name = value

__sizeof__()→ int
size of object in memory, in bytes

__str__

__subclasshook__()
Abstract classes can override this to customize issubclass().

This is invoked early on by abc.ABCMeta.__subclasscheck__(). It should return True, False or NotImple-
mented. If it returns NotImplemented, the normal algorithm is used. Otherwise, it overrides the normal
algorithm (and the outcome is cached).

__weakref__
list of weak references to the object (if defined)

invalidate()
Invalidates a timer object, stopping it from ever firing again.

is_valid()
Returns a boolean value that indicates whether an EngineTimer object is valid and able to fire.

set_nextfire(fire_delay, interval=-1)
Set the next firing delay in seconds for an EngineTimer object.

The optional paramater ‘interval’ sets the firing interval of the timer. If not specified, the timer fires once
and then is automatically invalidated.

Time values are expressed in second using floating point values. Precision is implementation (and system)
dependent.

It is safe to call this method from the task owning this timer object, in any event handlers, anywhere.

However, resetting a timer’s next firing time may be a relatively expensive operation. It is more efficient
to let timers autorepeat or to use this method from the timer’s own event handler callback (ie. from its
ev_timer).

94 Chapter 7. Python API

ClusterShell Documentation, Release 1.8

Workers

ClusterShell public Workers API autodoc.

Notes:

• Workers named NameWorker are new-style workers.

• Workers named WorkerName are old-style workers.

Contents:

Worker

ClusterShell worker interface.

A worker is a generic object which provides “grouped” work in a specific task.

class ClusterShell.Worker.Worker.Worker(handler)
Worker is an essential base class for the ClusterShell library. The goal of a worker object is to execute a common
work on a single or several targets (abstract notion) in parallel. Concret targets and also the notion of local or
distant targets are managed by Worker’s subclasses (for example, see the DistantWorker base class).

A configured Worker object is associated to a specific ClusterShell Task, which can be seen as a single-threaded
Worker supervisor. Indeed, the work to be done is executed in parallel depending on other Workers and Task’s
current paramaters, like current fanout value.

ClusterShell is designed to write event-driven applications, and the Worker class is key here as Worker objects
are passed as parameter of most event handlers (see the ClusterShell.Event.EventHandler class).

Example of use:

>>> from ClusterShell.Event import EventHandler
>>> class MyOutputHandler(EventHandler):
... def ev_read(self, worker, node, sname, msg):
... print "%s: %s" % (node, line)
...

SNAME_STDERR = ‘stderr’
stream name usually used for stderr

SNAME_STDIN = ‘stdin’
stream name usually used for stdin

SNAME_STDOUT = ‘stdout’
stream name usually used for stdout

__init__(handler)
Initializer. Should be called from derived classes.

__weakref__
list of weak references to the object (if defined)

abort()
Abort processing any action by this worker.

current_errmsg = None
set to stderr message in event handler

current_msg = None
set to stdout message in event handler

7.10. Workers 95

ClusterShell Documentation, Release 1.8

current_node = None
set to node in event handler

current_rc = None
set to return code in event handler

current_sname = None
set to stream name in event handler

did_timeout()
Return whether this worker has aborted due to timeout.

eh = None
associated EventHandler

flush_buffers()
Flush any messages associated to this worker.

flush_errors()
Flush any error messages associated to this worker.

last_error()
Get last error message from event handler. [DEPRECATED] use current_errmsg

last_read()
Get last read message from event handler. [DEPRECATED] use current_msg

read(node=None, sname=’stdout’)
Read worker stream buffer.

Return stream read buffer of current worker.

Arguments:

node – node name; can also be set to None for simple worker having worker.key defined (default
is None)

sname – stream name (default is ‘stdout’)

started = None
set to True when worker has started

task = None
worker’s task when scheduled or None

class ClusterShell.Worker.Worker.DistantWorker(handler)
Base class DistantWorker.

DistantWorker provides a useful set of setters/getters to use with distant workers like ssh or pdsh.

iter_buffers(match_keys=None)
Returns an iterator over available buffers and associated NodeSet. If the optional parameter match_keys is
defined, only keys found in match_keys are returned.

iter_errors(match_keys=None)
Returns an iterator over available error buffers and associated NodeSet. If the optional parameter
match_keys is defined, only keys found in match_keys are returned.

iter_keys_timeout()
Iterate over timed out keys (ie. nodes) for a specific worker.

iter_node_buffers(match_keys=None)
Returns an iterator over each node and associated buffer.

96 Chapter 7. Python API

ClusterShell Documentation, Release 1.8

iter_node_errors(match_keys=None)
Returns an iterator over each node and associated error buffer.

iter_node_retcodes()
Returns an iterator over each node and associated return code.

iter_retcodes(match_keys=None)
Returns an iterator over return codes and associated NodeSet. If the optional parameter match_keys is
defined, only keys found in match_keys are returned.

last_error()
Get last (node, error_buffer), useful in an EventHandler.ev_error() [DEPRECATED] use (current_node,
current_errmsg)

last_node()
Get last node, useful to get the node in an EventHandler callback like ev_read(). [DEPRECATED] use
current_node

last_read()
Get last (node, buffer), useful in an EventHandler.ev_read() [DEPRECATED] use (current_node, cur-
rent_msg)

last_retcode()
Get last (node, rc), useful in an EventHandler.ev_hup() [DEPRECATED] use (current_node, current_rc)

node_buffer(node)
Get specific node buffer.

node_error(node)
Get specific node error buffer.

node_error_buffer(node)
Get specific node error buffer.

node_rc(node)
Get specific node return code.

Raises KeyError – command on node has not yet finished (no return code available), or this
node is not known by this worker

node_retcode(node)
Get specific node return code.

Raises KeyError – command on node has not yet finished (no return code available), or this
node is not known by this worker

num_timeout()
Return the number of timed out “keys” (ie. nodes) for this worker.

ExecWorker

class ClusterShell.Worker.Exec.ExecWorker(nodes, handler, timeout=None, **kwargs)
ClusterShell simple execution worker Class.

It runs commands locally. If a node list is provided, one command will be launched for each node and specific
keywords will be replaced based on node name and rank.

Local shell usage example:

7.10. Workers 97

ClusterShell Documentation, Release 1.8

>>> worker = ExecWorker(nodeset, handler=MyEventHandler(),
... timeout=30, command="/bin/uptime")
>>> task.schedule(worker) # schedule worker for execution
>>> task.run() # run

Local copy usage example:

>>> worker = ExecWorker(nodeset, handler=MyEventHandler(),
... source="/etc/my.cnf",
... dest="/etc/my.cnf.bak")
>>> task.schedule(worker) # schedule worker for execution
>>> task.run() # run

connect_timeout option is ignored by this worker.

COPY_CLASS
alias of CopyClient

SHELL_CLASS
alias of ExecClient

__init__(nodes, handler, timeout=None, **kwargs)
Create an ExecWorker and its engine client instances.

abort()
Abort processing any action by this worker.

set_write_eof(sname=None)
Tell worker to close its writer file descriptors once flushed. Do not perform writes after this call.

write(buf, sname=None)
Write to worker clients.

class ClusterShell.Worker.Exec.ExecClient(node, command, worker, stderr, timeout, auto-
close=False, rank=None)

Run a simple local command.

Useful as a superclass for other more specific workers.

__init__(node, command, worker, stderr, timeout, autoclose=False, rank=None)
Create an EngineClient-type instance to locally run ‘command’.

Parameters node – will be used as key.

StreamWorker

class ClusterShell.Worker.Worker.StreamWorker(handler, key=None, stderr=False,
timeout=-1, autoclose=False,
client_class=<class ‘Cluster-
Shell.Worker.Worker.StreamClient’>)

StreamWorker base class [v1.7+]

The StreamWorker class implements a base (but concrete) Worker that can read and write to multiple streams.
Unlike most other Workers, it does not execute any external commands by itself. Rather, it should be pre-bound
to “streams”, ie. file(s) or file descriptor(s), using the two following methods:

>>> worker.set_reader('stream1', fd1)
>>> worker.set_writer('stream2', fd2)

98 Chapter 7. Python API

ClusterShell Documentation, Release 1.8

Like other Workers, the StreamWorker instance should be associated with a Task using task.schedule(worker).
When the task engine is ready to process the StreamWorker, all of its streams are being processed together. For
that reason, it is not possible to add new readers or writers to a running StreamWorker (ie. task is running and
worker is already scheduled).

Configured readers will generate ev_read() events when data is available for reading, with the stream name
passed as one of its argument.

Configured writers will allow the use of the method write(), eg. worker.write(data, ‘stream2’), to write to the
stream.

abort()
Abort processing any action by this worker.

read(node=None, sname=’stdout’)
Read worker stream buffer.

Return stream read buffer of current worker.

Arguments:

node – node name; can also be set to None for simple worker having worker.key defined (default
is None)

sname – stream name (default is ‘stdout’)

set_key(key)
Source key for this worker is free for use.

Use this method to set the custom source key for this worker.

set_reader(sname, sfile, retain=True, closefd=True)
Add a readable stream to StreamWorker.

Arguments: sname – the name of the stream (string) sfile – the stream file or file descriptor retain –
whether the stream retains engine client

(default is True)

closefd – whether to close fd when the stream is closed (default is True)

set_write_eof(sname=None)
Tell worker to close its writer file descriptor once flushed.

Do not perform writes after this call. Like write(), sname can be optionally specified to target a specific
writable stream, otherwise all writable streams are marked as EOF.

set_writer(sname, sfile, retain=True, closefd=True)
Set a writable stream to StreamWorker.

Arguments: sname – the name of the stream (string) sfile – the stream file or file descriptor retain –
whether the stream retains engine client

(default is True)

closefd – whether to close fd when the stream is closed (default is True)

write(buf, sname=None)
Write to worker.

If sname is specified, write to the associated stream, otherwise write to all writable streams.

7.10. Workers 99

ClusterShell Documentation, Release 1.8

class ClusterShell.Worker.Worker.StreamClient(worker, key, stderr, timeout, autoclose)
StreamWorker’s default EngineClient.

StreamClient is the EngineClient subclass used by default by StreamWorker. It handles some generic methods
to pass data to the StreamWorker.

set_write_eof(sname=None)
Set EOF flag to writable stream(s).

write(buf, sname=None)
Write to writable stream(s).

WorkerRsh

class ClusterShell.Worker.Rsh.WorkerRsh(nodes, handler, timeout=None, **kwargs)
ClusterShell rsh-based worker Class.

Remote Shell (rsh) usage example:

>>> worker = WorkerRsh(nodeset, handler=MyEventHandler(),
... timeout=30, command="/bin/hostname")
>>> task.schedule(worker) # schedule worker for execution
>>> task.resume() # run

Remote Copy (rcp) usage example:

>>> worker = WorkerRsh(nodeset, handler=MyEventHandler(),
... source="/etc/my.conf",
... dest="/etc/my.conf")
>>> task.schedule(worker) # schedule worker for execution
>>> task.resume() # run

connect_timeout option is ignored by this worker.

COPY_CLASS
alias of RcpClient

SHELL_CLASS
alias of RshClient

class ClusterShell.Worker.Rsh.RshClient(node, command, worker, stderr, timeout, auto-
close=False, rank=None)

Rsh EngineClient.

class ClusterShell.Worker.Rsh.RcpClient(node, source, dest, worker, stderr, timeout, autoclose,
preserve, reverse, rank=None)

Rcp EngineClient.

WorkerPdsh

class ClusterShell.Worker.Pdsh.WorkerPdsh(nodes, handler, timeout=None, **kwargs)
ClusterShell pdsh-based worker Class.

Remote Shell (pdsh) usage example:

>>> worker = WorkerPdsh(nodeset, handler=MyEventHandler(),
... timeout=30, command="/bin/hostname")
>>> task.schedule(worker) # schedule worker for execution
>>> task.resume() # run

100 Chapter 7. Python API

ClusterShell Documentation, Release 1.8

Remote Copy (pdcp) usage example:

>>> worker = WorkerPdsh(nodeset, handler=MyEventHandler(),
... timeout=30, source="/etc/my.conf",
... dest="/etc/my.conf")
>>> task.schedule(worker) # schedule worker for execution
>>> task.resume() # run

Known limitations:

• write() is not supported by WorkerPdsh

• return codes == 0 are not garanteed when a timeout is used (rc > 0 are fine)

COPY_CLASS
alias of PdcpClient

SHELL_CLASS
alias of PdshClient

set_write_eof()
Tell worker to close its writer file descriptor once flushed. Do not perform writes after this call.

Not supported by PDSH Worker.

write(buf)
Write data to process. Not supported with Pdsh worker.

class ClusterShell.Worker.Pdsh.PdshClient(node, command, worker, stderr, timeout, auto-
close=False, rank=None)

EngineClient which run ‘pdsh’

class ClusterShell.Worker.Pdsh.PdcpClient(node, source, dest, worker, stderr, timeout, auto-
close, preserve, reverse, rank=None)

EngineClient when pdsh is run to copy file, using pdcp.

WorkerPopen

class ClusterShell.Worker.Popen.WorkerPopen(command, key=None, handler=None,
stderr=False, timeout=-1, autoclose=False)

Implements the Popen Worker.

__init__(command, key=None, handler=None, stderr=False, timeout=-1, autoclose=False)
Initialize Popen worker.

retcode()
Return return code or None if command is still in progress.

class ClusterShell.Worker.Popen.PopenClient(worker, key, stderr, timeout, autoclose)

WorkerSsh

class ClusterShell.Worker.Ssh.WorkerSsh(nodes, handler, timeout=None, **kwargs)
ClusterShell ssh-based worker Class.

Remote Shell (ssh) usage example:

7.10. Workers 101

ClusterShell Documentation, Release 1.8

>>> worker = WorkerSsh(nodeset, handler=MyEventHandler(),
... timeout=30, command="/bin/hostname")
>>> task.schedule(worker) # schedule worker for execution
>>> task.resume() # run

Remote Copy (scp) usage example:

>>> worker = WorkerSsh(nodeset, handler=MyEventHandler(),
... timeout=30, source="/etc/my.conf",
... dest="/etc/my.conf")
>>> task.schedule(worker) # schedule worker for execution
>>> task.resume() # run

COPY_CLASS
alias of ScpClient

SHELL_CLASS
alias of SshClient

class ClusterShell.Worker.Ssh.SshClient(node, command, worker, stderr, timeout, auto-
close=False, rank=None)

Ssh EngineClient.

class ClusterShell.Worker.Ssh.ScpClient(node, source, dest, worker, stderr, timeout, autoclose,
preserve, reverse, rank=None)

Scp EngineClient.

102 Chapter 7. Python API

CHAPTER 8

Going further

Running the test suite

Get the latest Source code first.

Note: “The intent of regression testing is to assure that in the process of fixing a defect no existing functionality has
been broken. Non-regression testing is performed to test that an intentional change has had the desired effect.” (from
Wikipedia)

The tests directory of the source archive (not the RPM) contains all regression and non-regression tests. To run all
tests with Python 2, use the following commands:

$ cd tests
$ nosetests -sv --all-modules .

Or run all tests with Python 3 by using the following command instead:

$ nosetests-3 -sv --all-modules .

Some tests assume that ssh(1) to localhost is allowed for the current user. Some tests use bc(1). And some tests need
pdsh(1) installed.

Bug reports

We use Github Issues as issue tracking system for the ClusterShell development project. There, you can report bugs
or suggestions after logged in with your Github account.

103

https://en.wikipedia.org/wiki/Non-regression_testing
https://github.com/cea-hpc/clustershell/issues

ClusterShell Documentation, Release 1.8

104 Chapter 8. Going further

CHAPTER 9

Indices and tables

• genindex

• modindex

• search

105

ClusterShell Documentation, Release 1.8

106 Chapter 9. Indices and tables

Python Module Index

c
ClusterShell.Defaults, 91
ClusterShell.Event, 91
ClusterShell.MsgTree, 82
ClusterShell.NodeSet, 69
ClusterShell.NodeUtils, 74
ClusterShell.RangeSet, 76
ClusterShell.Task, 83
ClusterShell.Worker.Worker, 95

107

ClusterShell Documentation, Release 1.8

108 Python Module Index

Index

Symbols
__and__() (ClusterShell.NodeSet.NodeSet method), 70
__and__() (ClusterShell.RangeSet.RangeSet method), 76
__and__() (ClusterShell.RangeSet.RangeSetND method),

80
__contains__() (ClusterShell.NodeSet.NodeSet method),

70
__contains__() (ClusterShell.RangeSet.RangeSet

method), 76
__contains__() (ClusterShell.RangeSet.RangeSetND

method), 80
__copy__() (ClusterShell.NodeSet.NodeSet method), 70
__copy__() (ClusterShell.RangeSet.RangeSet method),

76
__copy__() (ClusterShell.RangeSet.RangeSetND

method), 80
__delattr__ (ClusterShell.Engine.Engine.EngineTimer at-

tribute), 94
__delattr__ (ClusterShell.NodeSet.NodeSet attribute), 70
__eq__() (ClusterShell.NodeSet.NodeSet method), 70
__eq__() (ClusterShell.RangeSet.RangeSet method), 76
__eq__() (ClusterShell.RangeSet.RangeSetND method),

80
__format__() (ClusterShell.Engine.Engine.EngineTimer

method), 94
__format__() (ClusterShell.NodeSet.NodeSet method),

70
__ge__() (ClusterShell.NodeSet.NodeSet method), 70
__ge__() (ClusterShell.RangeSet.RangeSet method), 76
__ge__() (ClusterShell.RangeSet.RangeSetND method),

80
__getattribute__ (Cluster-

Shell.Engine.Engine.EngineTimer attribute),
94

__getattribute__ (ClusterShell.NodeSet.NodeSet at-
tribute), 70

__getitem__() (ClusterShell.MsgTree.MsgTree method),
82

__getitem__() (ClusterShell.NodeSet.NodeSet method),

70
__getitem__() (ClusterShell.RangeSet.RangeSet

method), 76
__getitem__() (ClusterShell.RangeSet.RangeSetND

method), 80
__getstate__() (ClusterShell.NodeSet.NodeSet method),

70
__gt__() (ClusterShell.NodeSet.NodeSet method), 71
__hash__ (ClusterShell.Engine.Engine.EngineTimer at-

tribute), 94
__hash__ (ClusterShell.NodeSet.NodeSet attribute), 71
__iand__() (ClusterShell.NodeSet.NodeSet method), 71
__iand__() (ClusterShell.RangeSet.RangeSet method),

76
__iand__() (ClusterShell.RangeSet.RangeSetND

method), 80
__init__() (ClusterShell.MsgTree.MsgTree method), 82
__init__() (ClusterShell.NodeSet.NodeSet method), 71
__init__() (ClusterShell.NodeUtils.GroupResolver

method), 75
__init__() (ClusterShell.NodeUtils.GroupResolverConfig

method), 75
__init__() (ClusterShell.NodeUtils.GroupSource

method), 74
__init__() (ClusterShell.RangeSet.RangeSet method), 76
__init__() (ClusterShell.RangeSet.RangeSetND method),

80
__init__() (ClusterShell.Task.Task method), 85
__init__() (ClusterShell.Worker.Exec.ExecClient

method), 98
__init__() (ClusterShell.Worker.Exec.ExecWorker

method), 98
__init__() (ClusterShell.Worker.Popen.WorkerPopen

method), 101
__init__() (ClusterShell.Worker.Worker.Worker method),

95
__ior__() (ClusterShell.NodeSet.NodeSet method), 71
__ior__() (ClusterShell.RangeSet.RangeSet method), 77
__ior__() (ClusterShell.RangeSet.RangeSetND method),

80

109

ClusterShell Documentation, Release 1.8

__isub__() (ClusterShell.NodeSet.NodeSet method), 71
__isub__() (ClusterShell.RangeSet.RangeSet method), 77
__isub__() (ClusterShell.RangeSet.RangeSetND

method), 80
__iter__() (ClusterShell.MsgTree.MsgTree method), 83
__iter__() (ClusterShell.NodeSet.NodeSet method), 71
__iter__() (ClusterShell.RangeSet.RangeSet method), 77
__ixor__() (ClusterShell.NodeSet.NodeSet method), 71
__ixor__() (ClusterShell.RangeSet.RangeSet method), 77
__ixor__() (ClusterShell.RangeSet.RangeSetND

method), 80
__le__() (ClusterShell.NodeSet.NodeSet method), 71
__le__() (ClusterShell.RangeSet.RangeSet method), 77
__le__() (ClusterShell.RangeSet.RangeSetND method),

80
__len__() (ClusterShell.MsgTree.MsgTree method), 83
__len__() (ClusterShell.NodeSet.NodeSet method), 71
__len__() (ClusterShell.RangeSet.RangeSetND method),

80
__lt__() (ClusterShell.NodeSet.NodeSet method), 71
__new__() (ClusterShell.Engine.Engine.EngineTimer

method), 94
__new__() (ClusterShell.NodeSet.NodeSet method), 72
__new__() (ClusterShell.Task.Task static method), 85
__or__() (ClusterShell.NodeSet.NodeSet method), 72
__or__() (ClusterShell.RangeSet.RangeSet method), 77
__or__() (ClusterShell.RangeSet.RangeSetND method),

80
__reduce__() (ClusterShell.Engine.Engine.EngineTimer

method), 94
__reduce__() (ClusterShell.NodeSet.NodeSet method),

72
__reduce__() (ClusterShell.RangeSet.RangeSet method),

77
__reduce_ex__() (Cluster-

Shell.Engine.Engine.EngineTimer method),
94

__reduce_ex__() (ClusterShell.NodeSet.NodeSet
method), 72

__repr__ (ClusterShell.Engine.Engine.EngineTimer at-
tribute), 94

__repr__ (ClusterShell.NodeSet.NodeSet attribute), 72
__repr__() (ClusterShell.RangeSet.RangeSet method), 77
__setattr__ (ClusterShell.Engine.Engine.EngineTimer at-

tribute), 94
__setattr__ (ClusterShell.NodeSet.NodeSet attribute), 72
__setstate__() (ClusterShell.NodeSet.NodeSet method),

72
__setstate__() (ClusterShell.RangeSet.RangeSet

method), 77
__sizeof__() (ClusterShell.Engine.Engine.EngineTimer

method), 94
__sizeof__() (ClusterShell.NodeSet.NodeSet method), 72
__str__ (ClusterShell.Engine.Engine.EngineTimer

attribute), 94
__str__() (ClusterShell.NodeSet.NodeSet method), 72
__str__() (ClusterShell.RangeSet.RangeSet method), 77
__str__() (ClusterShell.RangeSet.RangeSetND method),

81
__sub__() (ClusterShell.NodeSet.NodeSet method), 72
__sub__() (ClusterShell.RangeSet.RangeSet method), 77
__sub__() (ClusterShell.RangeSet.RangeSetND method),

81
__subclasshook__() (Cluster-

Shell.Engine.Engine.EngineTimer method),
94

__subclasshook__() (ClusterShell.NodeSet.NodeSet
method), 72

__weakref__ (ClusterShell.Engine.Engine.EngineTimer
attribute), 94

__weakref__ (ClusterShell.MsgTree.MsgTree attribute),
83

__weakref__ (ClusterShell.NodeSet.NodeSet attribute),
72

__weakref__ (ClusterShell.NodeUtils.GroupResolver at-
tribute), 75

__weakref__ (ClusterShell.NodeUtils.GroupSource at-
tribute), 74

__weakref__ (ClusterShell.RangeSet.RangeSetND
attribute), 81

__weakref__ (ClusterShell.RangeSet.RangeSetND.precond_fold
attribute), 82

__weakref__ (ClusterShell.Task.Task attribute), 85
__weakref__ (ClusterShell.Task.Task.tasksyncmethod at-

tribute), 90
__weakref__ (ClusterShell.Worker.Worker.Worker

attribute), 95
__xor__() (ClusterShell.NodeSet.NodeSet method), 72
__xor__() (ClusterShell.RangeSet.RangeSet method), 77
__xor__() (ClusterShell.RangeSet.RangeSetND method),

81

A
abort() (ClusterShell.Task.Task method), 85
abort() (ClusterShell.Worker.Exec.ExecWorker method),

98
abort() (ClusterShell.Worker.Worker.StreamWorker

method), 99
abort() (ClusterShell.Worker.Worker.Worker method), 95
add() (ClusterShell.MsgTree.MsgTree method), 83
add() (ClusterShell.NodeSet.NodeSet method), 72
add() (ClusterShell.RangeSet.RangeSet method), 77
add_range() (ClusterShell.RangeSet.RangeSet method),

77
add_source() (ClusterShell.NodeUtils.GroupResolver

method), 75
all_nodes() (ClusterShell.NodeUtils.GroupResolver

method), 75

110 Index

ClusterShell Documentation, Release 1.8

autostep (ClusterShell.NodeSet.NodeSet attribute), 72
autostep (ClusterShell.RangeSet.RangeSet attribute), 77
autostep (ClusterShell.RangeSet.RangeSetND attribute),

81

C
clear() (ClusterShell.MsgTree.MsgTree method), 83
clear() (ClusterShell.NodeSet.NodeSet method), 72
clear() (ClusterShell.RangeSet.RangeSet method), 77
ClusterShell.Defaults (module), 91
ClusterShell.Event (module), 91
ClusterShell.MsgTree (module), 82
ClusterShell.NodeSet (module), 69
ClusterShell.NodeUtils (module), 74
ClusterShell.RangeSet (module), 76
ClusterShell.Task (module), 83
ClusterShell.Worker.Worker (module), 95
contiguous() (ClusterShell.NodeSet.NodeSet method), 72
contiguous() (ClusterShell.RangeSet.RangeSet method),

77
contiguous() (ClusterShell.RangeSet.RangeSetND

method), 81
copy() (ClusterShell.NodeSet.NodeSet method), 72
copy() (ClusterShell.RangeSet.RangeSet method), 78
copy() (ClusterShell.RangeSet.RangeSetND method), 81
copy() (ClusterShell.Task.Task method), 85
COPY_CLASS (ClusterShell.Worker.Exec.ExecWorker

attribute), 98
COPY_CLASS (ClusterShell.Worker.Pdsh.WorkerPdsh

attribute), 101
COPY_CLASS (ClusterShell.Worker.Rsh.WorkerRsh at-

tribute), 100
COPY_CLASS (ClusterShell.Worker.Ssh.WorkerSsh at-

tribute), 102
current_errmsg (ClusterShell.Worker.Worker.Worker at-

tribute), 95
current_msg (ClusterShell.Worker.Worker.Worker at-

tribute), 95
current_node (ClusterShell.Worker.Worker.Worker

attribute), 95
current_rc (ClusterShell.Worker.Worker.Worker at-

tribute), 96
current_sname (ClusterShell.Worker.Worker.Worker at-

tribute), 96

D
default() (ClusterShell.Task.Task method), 85
default_excepthook() (ClusterShell.Task.Task method),

85
default_source_name (Cluster-

Shell.NodeUtils.GroupResolver attribute),
75

Defaults (class in ClusterShell.Defaults), 91
DEFAULTS (in module ClusterShell.Defaults), 91

did_timeout() (ClusterShell.Worker.Worker.Worker
method), 96

difference() (ClusterShell.NodeSet.NodeSet method), 72
difference() (ClusterShell.RangeSet.RangeSet method),

78
difference() (ClusterShell.RangeSet.RangeSetND

method), 81
difference_update() (ClusterShell.NodeSet.NodeSet

method), 73
difference_update() (ClusterShell.RangeSet.RangeSet

method), 78
difference_update() (ClusterShell.RangeSet.RangeSetND

method), 81
dim() (ClusterShell.RangeSet.RangeSet method), 78
dim() (ClusterShell.RangeSet.RangeSetND method), 81
discard() (ClusterShell.RangeSet.RangeSet method), 78
DistantWorker (class in ClusterShell.Worker.Worker), 96

E
eh (ClusterShell.Worker.Worker.Worker attribute), 96
EngineTimer (class in ClusterShell.Engine.Engine), 93
ev_close() (ClusterShell.Event.EventHandler method), 93
ev_hup() (ClusterShell.Event.EventHandler method), 93
ev_msg() (ClusterShell.Event.EventHandler method), 93
ev_pickup() (ClusterShell.Event.EventHandler method),

92
ev_read() (ClusterShell.Event.EventHandler method), 92
ev_start() (ClusterShell.Event.EventHandler method), 92
ev_timer() (ClusterShell.Event.EventHandler method),

93
ev_written() (ClusterShell.Event.EventHandler method),

92
EventHandler (class in ClusterShell.Event), 92
ExecClient (class in ClusterShell.Worker.Exec), 98
ExecWorker (class in ClusterShell.Worker.Exec), 97
expand() (in module ClusterShell.NodeSet), 74

F
flush_buffers() (ClusterShell.Task.Task method), 85
flush_buffers() (ClusterShell.Worker.Worker.Worker

method), 96
flush_errors() (ClusterShell.Task.Task method), 85
flush_errors() (ClusterShell.Worker.Worker.Worker

method), 96
fold() (ClusterShell.RangeSet.RangeSetND method), 81
fold() (in module ClusterShell.NodeSet), 74
fromall() (ClusterShell.NodeSet.NodeSet class method),

73
fromlist() (ClusterShell.NodeSet.NodeSet class method),

73
fromlist() (ClusterShell.RangeSet.RangeSet class

method), 78
fromone() (ClusterShell.RangeSet.RangeSet class

method), 78

Index 111

ClusterShell Documentation, Release 1.8

G
get() (ClusterShell.MsgTree.MsgTree method), 83
get_autostep() (ClusterShell.NodeSet.NodeSet method),

73
get_autostep() (ClusterShell.RangeSet.RangeSet

method), 78
get_autostep() (ClusterShell.RangeSet.RangeSetND

method), 81
group_nodes() (ClusterShell.NodeUtils.GroupResolver

method), 75
grouplist() (ClusterShell.NodeUtils.GroupResolver

method), 75
grouplist() (in module ClusterShell.NodeSet), 74
GroupResolver (class in ClusterShell.NodeUtils), 75
GroupResolverConfig (class in ClusterShell.NodeUtils),

75
groups() (ClusterShell.NodeSet.NodeSet method), 73
GroupSource (class in ClusterShell.NodeUtils), 74

H
has_node_groups() (Cluster-

Shell.NodeUtils.GroupResolver method),
75

I
info() (ClusterShell.Task.Task method), 85
intersection() (ClusterShell.NodeSet.NodeSet method),

73
intersection() (ClusterShell.RangeSet.RangeSet method),

78
intersection() (ClusterShell.RangeSet.RangeSetND

method), 81
intersection_update() (ClusterShell.NodeSet.NodeSet

method), 73
intersection_update() (ClusterShell.RangeSet.RangeSet

method), 78
intersection_update() (Cluster-

Shell.RangeSet.RangeSetND method), 81
invalidate() (ClusterShell.Engine.Engine.EngineTimer

method), 94
is_valid() (ClusterShell.Engine.Engine.EngineTimer

method), 94
issubset() (ClusterShell.NodeSet.NodeSet method), 73
issubset() (ClusterShell.RangeSet.RangeSet method), 78
issubset() (ClusterShell.RangeSet.RangeSetND method),

81
issuperset() (ClusterShell.NodeSet.NodeSet method), 73
issuperset() (ClusterShell.RangeSet.RangeSet method),

78
issuperset() (ClusterShell.RangeSet.RangeSetND

method), 81
items() (ClusterShell.MsgTree.MsgTree method), 83
iter_buffers() (ClusterShell.Task.Task method), 85

iter_buffers() (ClusterShell.Worker.Worker.DistantWorker
method), 96

iter_errors() (ClusterShell.Task.Task method), 86
iter_errors() (ClusterShell.Worker.Worker.DistantWorker

method), 96
iter_keys_timeout() (ClusterShell.Task.Task method), 86
iter_keys_timeout() (Cluster-

Shell.Worker.Worker.DistantWorker method),
96

iter_node_buffers() (Cluster-
Shell.Worker.Worker.DistantWorker method),
96

iter_node_errors() (Cluster-
Shell.Worker.Worker.DistantWorker method),
96

iter_node_retcodes() (Cluster-
Shell.Worker.Worker.DistantWorker method),
97

iter_padding() (ClusterShell.RangeSet.RangeSetND
method), 81

iter_retcodes() (ClusterShell.Task.Task method), 86
iter_retcodes() (Cluster-

Shell.Worker.Worker.DistantWorker method),
97

J
join() (ClusterShell.Task.Task method), 86

K
key_buffer() (ClusterShell.Task.Task method), 86
key_error() (ClusterShell.Task.Task method), 86
key_retcode() (ClusterShell.Task.Task method), 86
keys() (ClusterShell.MsgTree.MsgTree method), 83

L
last_error() (ClusterShell.Worker.Worker.DistantWorker

method), 97
last_error() (ClusterShell.Worker.Worker.Worker

method), 96
last_node() (ClusterShell.Worker.Worker.DistantWorker

method), 97
last_read() (ClusterShell.Worker.Worker.DistantWorker

method), 97
last_read() (ClusterShell.Worker.Worker.Worker

method), 96
last_retcode() (ClusterShell.Worker.Worker.DistantWorker

method), 97
load_topology() (ClusterShell.Task.Task method), 86

M
max_retcode() (ClusterShell.Task.Task method), 86
messages() (ClusterShell.MsgTree.MsgTree method), 83
MsgTree (class in ClusterShell.MsgTree), 82

112 Index

ClusterShell Documentation, Release 1.8

N
node_buffer() (ClusterShell.Task.Task method), 87
node_buffer() (ClusterShell.Worker.Worker.DistantWorker

method), 97
node_error() (ClusterShell.Task.Task method), 87
node_error() (ClusterShell.Worker.Worker.DistantWorker

method), 97
node_error_buffer() (Cluster-

Shell.Worker.Worker.DistantWorker method),
97

node_groups() (ClusterShell.NodeUtils.GroupResolver
method), 75

node_rc() (ClusterShell.Worker.Worker.DistantWorker
method), 97

node_retcode() (ClusterShell.Task.Task method), 87
node_retcode() (Cluster-

Shell.Worker.Worker.DistantWorker method),
97

NodeSet (class in ClusterShell.NodeSet), 69
nsiter() (ClusterShell.NodeSet.NodeSet method), 73
num_timeout() (ClusterShell.Task.Task method), 87
num_timeout() (Cluster-

Shell.Worker.Worker.DistantWorker method),
97

P
pads() (ClusterShell.RangeSet.RangeSetND method), 81
PdcpClient (class in ClusterShell.Worker.Pdsh), 101
PdshClient (class in ClusterShell.Worker.Pdsh), 101
PopenClient (class in ClusterShell.Worker.Popen), 101
port() (ClusterShell.Task.Task method), 87

R
RangeSet (class in ClusterShell.RangeSet), 76
RangeSetND (class in ClusterShell.RangeSet), 79
RangeSetND.precond_fold (class in Cluster-

Shell.RangeSet), 81
rcopy() (ClusterShell.Task.Task method), 87
RcpClient (class in ClusterShell.Worker.Rsh), 100
read() (ClusterShell.Worker.Worker.StreamWorker

method), 99
read() (ClusterShell.Worker.Worker.Worker method), 96
regroup() (ClusterShell.NodeSet.NodeSet method), 73
remove() (ClusterShell.MsgTree.MsgTree method), 83
remove() (ClusterShell.NodeSet.NodeSet method), 73
remove() (ClusterShell.RangeSet.RangeSet method), 78
remove_port() (ClusterShell.Task.Task method), 87
resolv_all() (ClusterShell.NodeUtils.GroupSource

method), 75
resolv_list() (ClusterShell.NodeUtils.GroupSource

method), 75
resolv_map() (ClusterShell.NodeUtils.GroupSource

method), 75

resolv_reverse() (ClusterShell.NodeUtils.GroupSource
method), 75

resume() (ClusterShell.Task.Task method), 87
retcode() (ClusterShell.Worker.Popen.WorkerPopen

method), 101
RshClient (class in ClusterShell.Worker.Rsh), 100
run() (ClusterShell.Task.Task method), 87
running() (ClusterShell.Task.Task method), 88

S
schedule() (ClusterShell.Task.Task method), 88
ScpClient (class in ClusterShell.Worker.Ssh), 102
set_autostep() (ClusterShell.NodeSet.NodeSet method),

73
set_autostep() (ClusterShell.RangeSet.RangeSet

method), 78
set_autostep() (ClusterShell.RangeSet.RangeSetND

method), 82
set_default() (ClusterShell.Task.Task method), 88
set_info() (ClusterShell.Task.Task method), 88
set_key() (ClusterShell.Worker.Worker.StreamWorker

method), 99
set_nextfire() (ClusterShell.Engine.Engine.EngineTimer

method), 94
set_reader() (ClusterShell.Worker.Worker.StreamWorker

method), 99
set_std_group_resolver() (in module Cluster-

Shell.NodeSet), 74
set_verbosity() (ClusterShell.NodeUtils.GroupResolver

method), 75
set_write_eof() (ClusterShell.Worker.Exec.ExecWorker

method), 98
set_write_eof() (ClusterShell.Worker.Pdsh.WorkerPdsh

method), 101
set_write_eof() (Cluster-

Shell.Worker.Worker.StreamClient method),
100

set_write_eof() (Cluster-
Shell.Worker.Worker.StreamWorker method),
99

set_writer() (ClusterShell.Worker.Worker.StreamWorker
method), 99

shell() (ClusterShell.Task.Task method), 89
SHELL_CLASS (ClusterShell.Worker.Exec.ExecWorker

attribute), 98
SHELL_CLASS (ClusterShell.Worker.Pdsh.WorkerPdsh

attribute), 101
SHELL_CLASS (ClusterShell.Worker.Rsh.WorkerRsh

attribute), 100
SHELL_CLASS (ClusterShell.Worker.Ssh.WorkerSsh at-

tribute), 102
slices() (ClusterShell.RangeSet.RangeSet method), 78
SNAME_STDERR (ClusterShell.Worker.Worker.Worker

attribute), 95

Index 113

ClusterShell Documentation, Release 1.8

SNAME_STDIN (ClusterShell.Worker.Worker.Worker
attribute), 95

SNAME_STDOUT (ClusterShell.Worker.Worker.Worker
attribute), 95

sources() (ClusterShell.NodeUtils.GroupResolver
method), 75

split() (ClusterShell.NodeSet.NodeSet method), 73
split() (ClusterShell.RangeSet.RangeSet method), 78
SshClient (class in ClusterShell.Worker.Ssh), 102
started (ClusterShell.Worker.Worker.Worker attribute), 96
std_group_resolver() (in module ClusterShell.NodeSet),

74
StreamClient (class in ClusterShell.Worker.Worker), 99
StreamWorker (class in ClusterShell.Worker.Worker), 98
striter() (ClusterShell.NodeSet.NodeSet method), 73
striter() (ClusterShell.RangeSet.RangeSet method), 79
suspend() (ClusterShell.Task.Task method), 90
symmetric_difference() (ClusterShell.NodeSet.NodeSet

method), 74
symmetric_difference() (Cluster-

Shell.RangeSet.RangeSet method), 79
symmetric_difference() (Cluster-

Shell.RangeSet.RangeSetND method), 82
symmetric_difference_update() (Cluster-

Shell.NodeSet.NodeSet method), 74
symmetric_difference_update() (Cluster-

Shell.RangeSet.RangeSet method), 79
symmetric_difference_update() (Cluster-

Shell.RangeSet.RangeSetND method), 82

T
Task (class in ClusterShell.Task), 84
task (ClusterShell.Worker.Worker.Worker attribute), 96
Task.tasksyncmethod (class in ClusterShell.Task), 90
task_cleanup() (in module ClusterShell.Task), 90
task_self() (in module ClusterShell.Task), 90
task_terminate() (in module ClusterShell.Task), 90
task_wait() (in module ClusterShell.Task), 90
timer() (ClusterShell.Task.Task method), 90

U
union() (ClusterShell.NodeSet.NodeSet method), 74
union() (ClusterShell.RangeSet.RangeSet method), 79
union() (ClusterShell.RangeSet.RangeSetND method),

82
union_update() (ClusterShell.RangeSet.RangeSet

method), 79
union_update() (ClusterShell.RangeSet.RangeSetND

method), 82
update() (ClusterShell.NodeSet.NodeSet method), 74
update() (ClusterShell.RangeSet.RangeSet method), 79
update() (ClusterShell.RangeSet.RangeSetND method),

82
updaten() (ClusterShell.NodeSet.NodeSet method), 74

updaten() (ClusterShell.RangeSet.RangeSet method), 79

V
veclist (ClusterShell.RangeSet.RangeSetND attribute), 82
vectors() (ClusterShell.RangeSet.RangeSetND method),

82

W
wait() (ClusterShell.Task.Task class method), 90
walk() (ClusterShell.MsgTree.MsgTree method), 83
walk_trace() (ClusterShell.MsgTree.MsgTree method),

83
Worker (class in ClusterShell.Worker.Worker), 95
WorkerPdsh (class in ClusterShell.Worker.Pdsh), 100
WorkerPopen (class in ClusterShell.Worker.Popen), 101
WorkerRsh (class in ClusterShell.Worker.Rsh), 100
WorkerSsh (class in ClusterShell.Worker.Ssh), 101
write() (ClusterShell.Worker.Exec.ExecWorker method),

98
write() (ClusterShell.Worker.Pdsh.WorkerPdsh method),

101
write() (ClusterShell.Worker.Worker.StreamClient

method), 100
write() (ClusterShell.Worker.Worker.StreamWorker

method), 99

114 Index

	Introduction
	Release Notes
	Version 1.8
	Main changes in 1.8

	Version 1.7
	Version 1.7.3
	Version 1.7.2
	Version 1.7.1
	Main changes in 1.7

	Installation
	Requirements
	Distribution
	Fedora
	Red Hat Enterprise Linux (and CentOS)
	openSUSE
	Debian
	Ubuntu
	Installing ClusterShell using PIP

	Source

	Configuration
	clush
	Node groups
	groups.conf
	File-based group sources
	External group sources

	Library Defaults

	Tools
	nodeset
	Usage basics
	Stepping and auto-stepping
	Zero-padding
	Leading and trailing digits
	Arithmetic operations
	Special operations
	Node groups
	Range sets

	cluset
	clush
	Target and filter nodes
	Flat execution mode
	Tree execution mode
	Non-interactive (or one-shot) mode
	Interactive mode
	File copying mode
	Reverse file copying mode
	Other options

	clubak
	Overview
	Tree trace mode (-T)

	Programming Guide
	Node sets handling
	NodeSet class
	Node groups
	NodeSet object serialization

	Range sets
	RangeSet class
	RangeSetND class

	Task management
	Structure of Task
	Using Task objects
	Configuring explicit Shell Worker objects

	Programming Examples
	Remote command example (sequential mode)
	Remote command example with live output (event-based mode)
	check_nodes.py example script
	Using NodeSet with Parallel Python Batch script using SLURM

	Python API
	NodeSet
	Usage example

	NodeUtils
	RangeSet
	RangeSetND
	MsgTree
	Task
	Defaults
	Event
	EngineTimer
	Workers
	Worker
	ExecWorker
	StreamWorker
	WorkerRsh
	WorkerPdsh
	WorkerPopen
	WorkerSsh

	Going further
	Running the test suite
	Bug reports

	Indices and tables
	Python Module Index

