

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	clustershell 1.7.2 documentation

ClusterShell 1.7.2 documentation

Contents:

	Introduction

	Release Notes
	Version 1.7.2

	Version 1.7.1

	Version 1.7
	Maintenance release

	New features

	Installation
	Requirements

	Distribution
	Fedora

	Red Hat Enterprise Linux (and CentOS)

	Debian

	Ubuntu

	Installing ClusterShell using PIP

	Source

	Configuration
	clush

	Node groups
	groups.conf

	File-based group sources

	External group sources

	Library Defaults

	Tools
	nodeset
	Usage basics

	Stepping and auto-stepping

	Zero-padding

	Leading and trailing digits

	Arithmetic operations

	Special operations

	Node groups

	Range sets

	clush
	Target and filter nodes

	Tree mode

	Non-interactive (or one-shot) mode

	Interactive mode

	File copying mode

	Reverse file copying mode

	Other options

	clubak
	Overview

	Tree trace mode (-T)

	Programming Guide
	Node sets handling
	NodeSet class

	Node groups

	NodeSet object serialization

	Range sets
	RangeSet class

	RangeSetND class

	Task management
	Structure of Task

	Using Task objects

	Configuring explicit Shell Worker objects

	Programming Examples
	Remote command example (sequential mode)

	Remote command example with live output (event-based mode)

	check_nodes.py example script

	Using NodeSet with Parallel Python Batch script using SLURM

	Python API
	NodeSet
	Usage example

	NodeUtils

	RangeSet

	RangeSetND

	MsgTree

	Task

	Defaults

	Event

	EngineTimer

	Workers
	Worker

	ExecWorker

	StreamWorker

	WorkerRsh

	WorkerPdsh

	WorkerPopen

	WorkerSsh

	Going further
	Running the test suite

	Bug reports

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2016, Stephane Thiell.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	clustershell 1.7.2 documentation

Introduction

ClusterShell provides a light, unified and robust command execution Python
framework, well-suited to ease daily administrative tasks of nowadays Linux
clusters. Some of the most important benefits of using ClusterShell are:

	to provide an efficient, parallel and highly scalable command execution
engine in Python,

	to provide an unified node groups syntax and external group access (see the
NodeSet class),

	to significantly speed up initial cluster setup and daily administrative tasks
when using tools like clush and nodeset.

Originally created by the HPC Linux system development team at CEA [1] HPC
center in France, ClusterShell is designed around medium and long term ideas
of sharing cluster administration development time, and this according to two
axes:

	sharing administrative applications between main components of the computing
center: compute clusters, but also storage clusters and server farms (so
they can use the same efficient framework for their administrative
applications),

	sharing administration techniques across multiple generations of
super-computing clusters (first of all, to avoid that every cluster
administration application has to implement its own command execution layer,
but also to encourage the adoption of event-based coding model in
administration scripts).

Two available coding models make the library well-suited for simple scripts or
for complex applications as well. Also, the library is fully cluster-aware and
has primarily been made for executing remote shell commands in parallel and
gathering output results. But it now also provides the developer a set of
extra features for administrative applications, like file copy support or
time-based notifications (timers) which are discussed in this documentation.

	[1]	French Alternative Energies and Atomic Energy Commission, a leading
technological research organization in Europe

 Copyright 2016, Stephane Thiell.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	clustershell 1.7.2 documentation

Release Notes

Version 1.7.2

This minor version fixes a defect in tree mode that led
to broken pipe errors or unwanted backtraces.

The NodeSet class now supports the empty string as input. In
practice, you may now safely reuse the output of a
nodeset command as input argument for another
nodeset command, even if the result is an empty string.

A new option --pick is available for clush and
nodeset to pick N node(s) at random from the resulting
node set.

For more details, please have a look at GitHub Issues for 1.7.2 milestone [https://github.com/cea-hpc/clustershell/issues?utf8=%E2%9C%93&q=is%3Aissue+milestone%3A1.7.2].

ClusterShell 1.7.2 is compatible with Python 2.4 up to Python 2.7 (for
example: from RedHat EL5 to EL7). Upgrades from versions 1.6 or 1.7 are
supported.

Version 1.7.1

This minor version contains a few bug fixes, mostly related to
Node sets handling.

This version also contains bug fixes and performance improvements in tree
propagation mode.

For more details, please have a look at GitHub Issues for 1.7.1 milestone [https://github.com/cea-hpc/clustershell/issues?utf8=%E2%9C%93&q=is%3Aissue+milestone%3A1.7.1].

ClusterShell 1.7.1 is compatible with Python 2.4 up to Python 2.7 (for
example: from RedHat EL5 to EL7). Upgrades from versions 1.6 or 1.7 are
supported.

Version 1.7

It’s just a small version bump from the now well-known 1.6 version, but
ClusterShell 1.7 comes with some nice new features that we hope you’ll enjoy!
Most of these features have already been tested on some very large Linux
production systems.

This new version also comes with a refreshed documentation, based on the
Sphinx documentation generator, available on
http://clustershell.readthedocs.org.

We hope this new release will help you manage your clusters, server farms or
cloud farms! Special thanks to the many of you that have sent us feedback on
Github!

Maintenance release

Version 1.7 and possible future minor versions 1.7.x are compatible with
Python 2.4 up to Python 2.7 (for example: from RedHat EL5 to EL7). Upgrade
from version 1.6 to 1.7 should be painless and is fully supported.

The next major version of ClusterShell will require at least Python 2.6. We
will also soon start working on Python 3 support.

New features

Multidimensional nodesets

The NodeSet class and nodeset command-line
have been improved to support multidimentional node sets with folding
capability. The use of nD naming scheme is sometimes used to map node names to
physical location like name-<rack>-<position> or node position within the
cluster interconnect network topology.

A first example of 3D nodeset expansion is a good way to start:

$ nodeset -e gpu-[1,3]-[4-5]-[0-6/2]
gpu-1-4-0 gpu-1-4-2 gpu-1-4-4 gpu-1-4-6 gpu-1-5-0 gpu-1-5-2 gpu-1-5-4
gpu-1-5-6 gpu-3-4-0 gpu-3-4-2 gpu-3-4-4 gpu-3-4-6 gpu-3-5-0 gpu-3-5-2
gpu-3-5-4 gpu-3-5-6

You’ve probably noticed the /2 notation of the last dimension. It’s called
a step and behaves as one would expect, and is fully supported with nD
nodesets.

All other nodeset commands and options are supported
with nD nodesets. For example, it’s always useful to have a quick way to count
the number of nodes in a nodeset:

$ nodeset -c gpu-[1,3]-[4-5]-[0-6/2]
16

Then to show the most interesting new capability of the underlying
NodeSet class in version 1.7, a folding example is probably
appropriate:

$ nodeset -f compute-1-[1-34] compute-2-[1-34]
compute-[1-2]-[1-34]

In the above example, nodeset will try to find a very compact nodesets
representation whenever possible. ClusterShell is probably the first and only
cluster tool capable of doing such complex nodeset folding.

Attention, as not all cluster tools are supporting this kind of complex
nodesets, even for nodeset expansion, we added an --axis option to select
to fold along some desired dimension:

$ nodeset --axis 2 -f compute-[1-2]-[1-34]
compute-1-[1-34],compute-2-[1-34]

The last dimension can also be selected using -1:

$ nodeset --axis -1 -f compute-[1-2]-[1-34]
compute-1-[1-34],compute-2-[1-34]

All set-like operations are also supported with several dimensions, for
example difference (-x):

$ nodeset -f c-[1-10]-[1-44] -x c-[5-10]-[1-34]
c-[1-4]-[1-44],c-[5-10]-[35-44]

Hard to follow? Don’t worry, ClusterShell does it for you!

File-based node groups

Cluster node groups have been a great success of previous version of
ClusterShell and are now widely adopted. So we worked on improving it even
more for version 1.7.

For those of you who use the file /etc/clustershell/group to describe
node groups, that is still supported in 1.7 and upgrade from your 1.6 setup
should work just fine. However, for new 1.7 installations, we have put this
file in a different location by default:

$ vim /etc/clustershell/groups.d/local.cfg

Especially if you’re starting a new setup, you have also the choice to switch
to a more advanced groups YAML configuration file that can define multiple
sources in a single file (equivalent to separate namespaces for node
groups). The YAML format possibly allows you to edit the file content with
YAML tools but it’s also a file format convenient to edit just using the vim
editor. To enable the example file, you need to rename it first as it needs to
have the .yaml extension:

$ cd /etc/clustershell/groups.d
$ mv cluster.yaml.example cluster.yaml

You can make the first dictionary found on this file (named roles) to be the
default source by changing default: local to default: roles in
/etc/clustershell/groups.conf (main config file for groups).

For more info about the YAML group files, please see File-based group sources.

Please also see node groups configuration for node
groups configuration in general.

nodeset -L/–list-all option

Additionally, the nodeset command also has a new option
-L or --list-all to list groups from all sources (-l only lists
groups from the default source). This can be useful when configuring
ClusterShell and/or troubleshooting node group sources:

$ nodeset -LL
@adm example0
@all example[2,4-5,32-159]
@compute example[32-159]
@gpu example[156-159]
@io example[2,4-5]
@racks:new example[4-5,156-159]
@racks:old example[0,2,32-159]
@racks:rack1 example[0,2]
@racks:rack2 example[4-5]
@racks:rack3 example[32-159]
@racks:rack4 example[156-159]
@cpu:hsw example[64-159]
@cpu:ivy example[32-63]

Special group @*

The special group syntax @* (or @source:* if using explicit source
selection) has been added and can be used in configuration files or with
command line tools. This special group is always available for file-based node
groups (return the content of the all group, or all groups from the source
otherwise). For external sources, it is available when either the all
upcall is defined or both map and list upcalls are defined. The all
special group is also used by clush -a and nodeset -a. For example,
the two following commands are equivalent:

$ nodeset -a -f
example[2,4-5,32-159]

$ nodeset -f @*
example[2,4-5,32-159]

Exec worker

Version 1.7 introduces a new generic execution worker named
ExecWorker as the new base class for most exec()-based worker
classes. In practice with clush, you can now specify the worker in
command line using --worker or -R and use exec. It also supports
special placeholders for the node (%h) or rank (%n). For example, the
following command will execute ping commands in parallel, each with a
different host from hosts cs01, etc. to cs05 as argument and then
aggregate the results:

$ clush -R exec -w cs[01-05] -bL 'ping -c1 %h >/dev/null && echo ok'
cs[01-04]: ok
clush: cs05: exited with exit code 1

This feature allows the system administrator to use non cluster-aware tools in
a more efficient way. You may also want to explicitly set the fanout (using
-f) to limit the number of parallel local commands launched.

Please see also clush worker selection.

Rsh worker

Version 1.7 adds support for rsh or any of its variants like krsh or
mrsh.
rsh and ssh also share a lot of common mechanisms. Worker Rsh was
added moving a lot of Worker Ssh code into it.

For clush, please see clush worker selection to
enable rsh.

To use rsh by default instead of ssh at the library level, install the
provided example file named defaults.conf-rsh to
/etc/clustershell/defaults.conf.

Tree Propagation Mode

The ClusterShell Tree Mode allows you to send commands to target nodes through
a set of predefined gateways (using ssh by default). It can be useful to
access servers that are behind some other servers like bastion hosts, or to
scale on very large clusters when the flat mode (eg. sliding window of ssh
commands) is not enough anymore.

The tree mode is now documented, it has been improved and
is enabled by default when a topology.conf file is found. While it is still
a work in progress, the tree mode is known to work pretty well when all gateways
are online. We’ll continue to improve it and make it more robust in the next
versions.

Configuration files

When $XDG_CONFIG_HOME is defined, ClusterShell will use it to search for
additional configuration files.

PIP user installation support

ClusterShell 1.7 is now fully compatible with PIP and supports user
configuration files:

$ pip install --user clustershell

Please see Installing ClusterShell as user using PIP.

 Copyright 2016, Stephane Thiell.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	clustershell 1.7.2 documentation

Installation

ClusterShell is distributed in several packages. On RedHat-like OS, we
recommend to use the RPM package (.rpm) distribution.

As a system software for cluster, ClusterShell is primarily made for
system-wide installation. However, changes have been made so that’s it is now
easy to install it without root access (see Installing ClusterShell as user using PIP).

Requirements

ClusterShell 1.7.2 should work with any Unix [1] operating systems which
provides Python 2.4 to 2.7 (not Python 3.x validated) and OpenSSH or any
compatible Secure Shell clients.

Furthermore, ClusterShell’s engine has been optimized when the poll()
syscall is available or even better, when the epoll_wait() syscall (since
Linux 2.6) is available.

For instance, ClusterShell 1.7.2 is known to work on the following
operating systems:

	GNU/Linux RedHat EL5 or CentOS 5.x (Python 2.4), EL6 (Python 2.6) and EL7
(Python 2.7)

	GNU/Linux Fedora 11 to 22 (Python 2.6 - 2.7),

	GNU/Linux Debian (wheezy and above)

	Mac OS X 10.5.8 or more

Distribution

ClusterShell is an open-source project distributed under the CeCILL-C flavor
of the CeCILL license family [http://www.cecill.info/index.en.html], which is in conformance with the French law
and fully compatible with the GNU LGPL (Lesser GPL) license, which means that
many possibilities are offered to the end user. Also, as a software library,
ClusterShell has to remain easily available to everyone. Hopefully, packages
are currently maintained in Fedora Linux, RHEL (through EPEL repositories),
Debian and Arch Linux.

Fedora

At the time of writing, ClusterShell 1.7.2 is available on Fedora 22
(releases being maintained by the Fedora Project).

Install ClusterShell from Fedora Updates

ClusterShell is part of Fedora, so it is really easy to install it with
yum, although you have to keep the Fedora updates default repository.
The following command checks whether the packages are available on a Fedora
machine:

$ yum list *clustershell
Loaded plugins: presto, priorities, refresh-packagekit
Available Packages
clustershell.noarch 1.5.1-1.fc15 updates
vim-clustershell.noarch 1.5.1-1.fc15 updates

Then, install ClusterShell (library and tools) with the following command:

$ yum install clustershell vim-clustershell

Please note that optional (but recommended) vim-clustershell package will
install VIM syntax files for ClusterShell configuration files like
clush.conf and groups.conf.

Install ClusterShell from Fedora Updates Testing

Recent releases of ClusterShell are first available through the Test
Updates [http://fedoraproject.org/wiki/QA/Updates_Testing] yum repository of Fedora, then it is later pushed to the stable
updates repository. The following yum command will also checks for
packages availability in the updates-testing repository:

$ yum list *clustershell --enablerepo=updates-testing

To install, also add the --enablerepo=updates-testing option, for
instance:

$ yum install clustershell vim-clustershell --enablerepo=updates-testing

Red Hat Enterprise Linux (and CentOS)

ClusterShell packages are maintained on Extra Packages for Enterprise Linux
EPEL [http://fedoraproject.org/wiki/EPEL] for Red Hat Enterprise Linux (RHEL) and its compatible spinoffs such
as CentOS. At the time of writing, ClusterShell 1.7.2 is available on
EPEL 5, 6 and 7.

Install ClusterShell from EPEL

First you have to enable the yum EPEL repository. We recommend to download
and install the EPEL repository RPM package.

Then, the ClusterShell installation procedure is quite the same of the Fedora
Updates one, for instance:

$ yum install clustershell vim-clustershell

Debian

ClusterShell is available in Debian main repository (since 2011).

To install it on Debian, simply use:

$ apt-get install clustershell

You can get the latest version on:

* http://packages.debian.org/sid/clustershell

Ubuntu

Like Debian, it is easy to get and install ClusterShell on Ubuntu (also with
apt-get). To do so, please first enable the universe repository.
ClusterShell is available since “Natty” release (11.04):

	http://packages.ubuntu.com/clustershell

Installing ClusterShell using PIP

Installing ClusterShell as root using PIP

To install ClusterShell as a standard Python package using PIP [2] as root:

$ pip install clustershell

Or alternatively, using the source tarball:

$ pip install clustershell-1.x.tar.gz

Installing ClusterShell as user using PIP

To install ClusterShell as a standard Python package using PIP as an user:

$ pip install --user clustershell

Or alternatively, using the source tarball:

$ pip install --user clustershell-1.x.tar.gz

Then, you just need to update your PYTHONPATH environment variable to be
able to import the library and PATH to easily use the Tools:

$ export PYTHONPATH=$PYTHONPATH:~/.local/lib
$ export PATH=$PATH:~/.local/bin

Configuration files are installed in ~/.local/etc/clustershell and are
automatically loaded before system-wide ones (for more info about supported
user config files, please see the clush or Node groups
config sections).

Source

Current source is available through Git, use the following command to retrieve
the latest development version from the repository:

$ git clone git@github.com:cea-hpc/clustershell.git

	[1]	Unix in the same sense of the Availability: Unix notes in the Python
documentation

	[2]	pip is a tool for installing and managing Python packages, such as
those found in the Python Package Index

 Copyright 2016, Stephane Thiell.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	clustershell 1.7.2 documentation

Configuration

clush

The following configuration file defines system-wide default values for
several clush tool parameters:

/etc/clustershell/clush.conf

clush settings might then be overridden per user if one of the following
files is found, in priority order:

$XDG_CONFIG_HOME/clustershell/clush.conf
$HOME/.config/clustershell/clush.conf (only if $XDG_CONFIG_HOME is not defined)
$HOME/.local/etc/clustershell/clush.conf
$HOME/.clush.conf (deprecated, for 1.6 compatibility only)

The following table describes available clush config file settings.

	Key
	Value

	fanout
	Size of the sliding window of ssh(1) connectors.

	connect_timeout
	Timeout in seconds to allow a connection to
establish. This parameter is passed to ssh(1).
If set to 0, no timeout occurs.

	command_timeout
	Timeout in seconds to allow a command to complete
since the connection has been established. This
parameter is passed to ssh(1). In addition, the
ClusterShell library ensures that any commands
complete in less than (connect_timeout +
command_timeout). If set to 0, no timeout occurs.

	color
	Whether to use ANSI colors to surround node
or nodeset prefix/header with escape sequences to
display them in color on the terminal. Valid
arguments are never, always or auto (which
use color if standard output/error refer to a
terminal).
Colors are set to [34m (blue foreground text)
for stdout and [31m (red foreground text) for
stderr, and cannot be modified.

	fd_max
	Maximum number of open file descriptors
permitted per clush process (soft resource limit
for open files). This limit can never exceed the
system (hard) limit. The fd_max (soft) and
system (hard) limits should be high enough to
run clush, although their values depend on
your fanout value.

	history_size
	Set the maximum number of history entries saved in
the GNU readline history list. Negative values
imply unlimited history file size.

	node_count
	Should clush display additional (node count)
information in buffer header? (yes/no)

	verbosity
	Set the verbosity level: 0 (quiet), 1 (default),
2 (verbose) or more (debug).

	ssh_user
	Set the ssh(1) user to use for remote connection
(default is to not specify).

	ssh_path
	Set the ssh(1) binary path to use for remote
connection (default is ssh).

	ssh_options
	Set additional (raw) options to pass to the
underlying ssh(1) command.

	scp_path
	Set the scp(1) binary path to use for remote
copy (default is scp).

	scp_options
	Set additional options to pass to the underlying
scp(1) command. If not specified, ssh_options
are used instead.

	rsh_path
	Set the rsh(1) binary path to use for remote
connection (default is rsh). You could easily
use mrsh or krsh by simply changing this
value.

	rcp_path
	Same as rsh_path but for rcp command (default is
rcp).

	rsh_options
	Set additional options to pass to the underlying
rsh/rcp command.

Node groups

ClusterShell defines a node group syntax to represent a collection of nodes.
This is a convenient way to manipulate node sets, especially in HPC (High
Performance Computing) or with large server farms. This section explains how
to configure node group sources. Please see also nodeset node groups for specific usage examples.

groups.conf

ClusterShell loads groups.conf configuration files that define how to
obtain node groups configuration, ie. the way the library should access
file-based or external node group sources.

The following configuration file defines system-wide default values for
groups.conf:

/etc/clustershell/groups.conf

groups.conf settings might then be overridden per user if one of the
following files is found, in priority order:

$XDG_CONFIG_HOME/clustershell/groups.conf
$HOME/.config/clustershell/groups.conf (only if $XDG_CONFIG_HOME is not defined)
$HOME/.local/etc/clustershell/groups.conf

This makes possible for an user to have its own node groups configuration.
If no readable configuration file is found, group support will be disabled but
other node set operations will still work.

groups.conf defines configuration sub-directories, but may also define
source definitions by itself. These sources provide external calls that
are detailed in External group sources.

The following example shows the content of a groups.conf file where node
groups are bound to the source named genders by default:

[Main]
default: genders
confdir: /etc/clustershell/groups.conf.d $CFGDIR/groups.conf.d
autodir: /etc/clustershell/groups.d $CFGDIR/groups.d

[genders]
map: nodeattr -n $GROUP
all: nodeattr -n ALL
list: nodeattr -l

[slurm]
map: sinfo -h -o "%N" -p $GROUP
all: sinfo -h -o "%N"
list: sinfo -h -o "%P"
reverse: sinfo -h -N -o "%P" -n $NODE

The groups.conf files are parsed with Python’s ConfigParser [http://docs.python.org/library/configparser.html]:

	The first section whose name is Main accepts the following keywords:
	default defines a default node group source (eg. by referencing a
valid section header)

	confdir defines an optional list of directory paths where the
ClusterShell library should look for .conf files which define group
sources to use. Each file in these directories with the .conf suffix
should contain one or more node group source sections as documented below.
These will be merged with the group sources defined in the main
groups.conf to form the complete set of group sources to use. Duplicate
group source sections are not allowed in those files. Configuration files
that are not readable by the current user are ignored (except the one that
defines the default group source). The variable $CFGDIR is replaced by
the path of the highest priority configuration directory found (where
groups.conf resides). The default confdir value enables both
system-wide and any installed user configuration (thanks to $CFGDIR).
Duplicate directory paths are ignored.

	autodir defines an optional list of directories where the ClusterShell
library should look for .yaml files that define in-file group
dictionaries. No need to call external commands for these files, they are
parsed by the ClusterShell library itself. Multiple group source
definitions in the same file is supported. The variable $CFGDIR is
replaced by the path of the highest priority configuration directory found
(where groups.conf resides). The default confdir value enables both
system-wide and any installed user configuration (thanks to $CFGDIR).
Duplicate directory paths are ignored.

	Each following section (genders, slurm) defines a group source. The
map, all, list and reverse upcalls are explained below in
Group source upcalls.

File-based group sources

Version 1.7 introduces support for native handling of flat files with
different group sources to avoid the use of external upcalls for such static
configuration. This can be achieved through the autodir feature and YAML
files described below.

YAML group files

Cluster node groups can be defined in straightforward YAML files. In such a
file, each YAML dictionary defines group to nodes mapping. Different
dictionaries are handled as different group sources.

For compatibility reasons with previous versions of ClusterShell, this is not
the default way to define node groups yet. So here are the steps needed to try
this out:

Rename the following file:

/etc/clustershell/groups.d/cluster.yaml.example

to a file having the .yaml extension, for example:

/etc/clustershell/groups.d/cluster.yaml

Ensure that autodir is set in groups.conf:

autodir: /etc/clustershell/groups.d $CFGDIR/groups.d

In the following example, we also changed the default group source
to roles in groups.conf (the first dictionary defined in
the example), so that @roles:groupname can just be shorted @groupname.

Here is an example of /etc/clustershell/groups.d/cluster.yaml:

roles:
 adm: 'mgmt[1-2]' # define groups @roles:adm and @adm
 login: 'login[1-2]'
 compute: 'node[0001-0288]'
 gpu: 'node[0001-0008]'

 cpu_only: '@compute!@gpu' # example of inline set operation
 # define group @cpu_only with node[0009-0288]

 storage: '@lustre:mds,@lustre:oss' # example of external source reference

 all: '@login,@compute,@storage' # special group used for clush/nodeset -a
 # only needed if not including all groups

lustre:
 mds: 'mds[1-4]'
 oss: 'oss[0-15]'
 rbh: 'rbh[1-2]'

Testing the syntax of your group file can be quickly performed through the
-L or --list-all command of nodeset:

$ nodeset -LL
@adm mgmt[1-2]
@all login[1-2],mds[1-4],node[0001-0288],oss[0-15],rbh[1-2]
@compute node[0001-0288]
@cpu_only node[0009-0288]
@gpu node[0001-0008]
@login login[1-2]
@storage mds[1-4],oss[0-15],rbh[1-2]
@sysgrp sysgrp[1-4]
@lustre:mds mds[1-4]
@lustre:oss oss[0-15]
@lustre:rbh rbh[1-2]

External group sources

Group source upcalls

Each node group source is defined by a section name (source name) and up to
four upcalls:

	map: External shell command used to resolve a group name into a node
set, list of nodes or list of node sets (separated by space characters or by
carriage returns). The variable $GROUP is replaced before executing the command.

	all: Optional external shell command that should return a node set, list
of nodes or list of node sets of all nodes for this group source. If not
specified, the library will try to resolve all nodes by using the list
external command in the same group source followed by map for each
available group. The notion of all nodes is used by clush -a and also
by the special group name @* (or @source:*).

	list: Optional external shell command that should return the list of all
groups for this group source (separated by space characters or by carriage
returns). If this upcall is not specified, ClusterShell won’t be able to
list any available groups (eg. with nodeset -l), so it is highly
recommended to set it.

	reverse: Optional external shell command used to find the group(s) of a
single node. The variable $NODE is previously replaced. If this external
call is not specified, the reverse operation is computed in memory by the
library from the list and map external calls, if available. Also, if
the number of nodes to reverse is greater than the number of available
groups, the reverse external command is avoided automatically to reduce
resolution time.

In addition to context-dependent $GROUP and $NODE variables described
above, the two following variables are always available and also replaced
before executing shell commands:

	$CFGDIR is replaced by groups.conf base directory path

	$SOURCE is replaced by current source name (see an usage example just
below)

Multiple sources section

Use a comma-separated list of source names in the section header if you want
to define multiple group sources with similar upcall commands. The special
variable $SOURCE is always replaced by the source name before command
execution (here cluster, racks and cpu), for example:

[cluster,racks,cpu]
map: get_nodes_from_source.sh $SOURCE $GROUP
all: get_all_nodes_from_source.sh $SOURCE
list: list_nodes_from_source.sh $SOURCE

is equivalent to:

[cluster]
map: get_nodes_from_source.sh cluster $GROUP
all: get_all_nodes_from_source.sh cluster
list: list_nodes_from_source.sh cluster

[racks]
map: get_nodes_from_source.sh racks $GROUP
all: get_all_nodes_from_source.sh racks
list: list_nodes_from_source.sh racks

[cpu]
map: get_nodes_from_source.sh cpu $GROUP
all: get_all_nodes_from_source.sh cpu
list: list_nodes_from_source.sh cpu

Return code of external calls

Each external command might return a non-zero return code when the operation
is not doable. But if the call return zero, for instance, for a non-existing
group, the user will not receive any error when trying to resolve such unknown
group. The desired behavior is up to the system administrator.

Library Defaults

Warning

Modifying library defaults is for advanced users only as that
could change the behavior of tools using ClusterShell. Moreover, tools are
free to enforce their own defaults, so changing library defaults may not
change a global behavior as expected.

Since version 1.7, most defaults of the ClusterShell library may be overridden
in defaults.conf.

The following configuration file defines ClusterShell system-wide defaults:

/etc/clustershell/defaults.conf

defaults.conf settings might then be overridden per user if one of the
following files is found, in priority order:

$XDG_CONFIG_HOME/clustershell/defaults.conf
$HOME/.config/clustershell/defaults.conf (only if $XDG_CONFIG_HOME is not defined)
$HOME/.local/etc/clustershell/defaults.conf

 Copyright 2016, Stephane Thiell.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	clustershell 1.7.2 documentation

Tools

Three Python scripts using the ClusterShell library are provided with the
distribution:

	nodeset, a tool to manage cluster node sets and groups,

	clush, a powerful parallel command execution tool with output gathering,

	clubak, a tool to gather and display results from clush/pdsh-like output (and more).

	nodeset
	Usage basics

	Stepping and auto-stepping

	Zero-padding

	Leading and trailing digits

	Arithmetic operations

	Special operations

	Node groups

	Range sets

	clush
	Target and filter nodes

	Tree mode

	Non-interactive (or one-shot) mode

	Interactive mode

	File copying mode

	Reverse file copying mode

	Other options

	clubak
	Overview

	Tree trace mode (-T)

 Copyright 2016, Stephane Thiell.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	clustershell 1.7.2 documentation

 	Tools

nodeset

The nodeset command enables easy manipulation of node sets, as well as
node groups, at the command line level. As it is very user-friendly and
efficient, the nodeset command can quickly improve traditional cluster
shell scripts. It is also full-featured as it provides most of the
NodeSet and RangeSet class methods (see also
NodeSet class, and RangeSet class).

The nodeset command supports RFC 1123 (which defines naming standards for
host names) except that a node name can’t be entirely numeric.

Most of the examples in this section are using simple indexed node sets,
however, nodeset supports multidimensional node sets, like dc[1-2]n[1-99],
introduced in version 1.7 (see RangeSetND class for more info).

This section will guide you through the basics and also more advanced features
of nodeset.

Usage basics

One exclusive command must be specified to nodeset, for example:

$ nodeset --expand node[13-15,17-19]
node13 node14 node15 node17 node18 node19
$ nodeset --count node[13-15,17-19]
6
$ nodeset --fold node1-ipmi node2-ipmi node3-ipmi
node[1-3]-ipmi

Commands with inputs

Some nodeset commands require input (eg. node names, node sets or node
groups), and some only give output. The following table shows commands that
require some input:

	Command
	Description

	-c, --count
	Count and display the total number of nodes in node
sets or/and node groups.

	-e, --expand
	Expand node sets or/and node groups as unitary node
names separated by current separator string (see
--separator option described in
Output result formatting).

	-f, --fold
	Fold (compact) node sets or/and node groups into one
set of nodes (by previously resolving any groups). The
resulting node set is guaranteed to be free from node
--regroup below if you want to resolve node groups
in result). Please note that folding may be time
consuming for multidimensional node sets.

	-r, --regroup
	Fold (compact) node sets or/and node groups into one
set of nodes using node groups whenever possible (by
previously resolving any groups).
See Node groups.

There are three ways to give some input to the nodeset command:

	from command line arguments,

	from standard input (enabled when no arguments are found on command line),

	from both command line and standard input, by using the dash special
argument “-“ meaning you need to use stdin instead.

The following example illustrates the three ways to feed nodeset:

$ nodeset -f node1 node6 node7
node[1,6-7]

$ echo node1 node6 node7 | nodeset -f
node[1,6-7]

$ echo node1 node6 node7 | nodeset -f node0 -
node[0-1,6-7]

Furthermore, nodeset‘s standard input reader is able to process multiple
lines and multiple node sets or groups per line. The following example shows a
simple use case:

$ mount -t nfs | cut -d':' -f1
nfsserv1
nfsserv2
nfsserv3

$ mount -t nfs | cut -d':' -f1 | nodeset -f
nfsserv[1-3]

Other usage examples of nodeset below show how it can be useful to provide
node sets from standard input (sinfo is a SLURM [1] command to view nodes
and partitions information and sacct is a command to display SLURM
accounting data):

$ sinfo -p cuda -o '%N' -h
node[156-159]

$ sinfo -p cuda -o '%N' -h | nodeset -e
node156 node157 node158 node159

$ for node in $(sinfo -p cuda -o '%N' -h | nodeset -e); do
 sacct -a -N $node > /tmp/cudajobs.$node;
 done

Previous rules also apply when working with node groups, for example when
using nodeset -r reading from standard input (and a matching group is
found):

$ nodeset -f @gpu
node[156-159]

$ sinfo -p cuda -o '%N' -h | nodeset -r
@gpu

Most commands described in this section produce output results that may be
formatted using --output-format and --separator which are described in
Output result formatting.

Commands with no input

The following table shows all other commands that are supported by
nodeset. These commands don’t support any input (like node sets), but can
still recognize options as specified below.

	Command w/o input
	Description

	-l, --list
	List node groups from selected group source as
specified with -s or --groupsource. If
not specified, node groups from the default group
source are listed (see groups configuration for default group source
configuration).

	--groupsources
	List all configured group sources, one per line,
as configured in groups.conf (see
groups configuration).
The default group source is appended with
`` (default)``, unless the -q, --quiet
option is specified. This command is mainly here to
avoid reading any configuration files, or to check
if all work fine when configuring group sources.

Output result formatting

When using the expand command (-e, --expand), a separator string is used
when displaying results. The option -S, --separator allows you to
modify it. The specified string is interpreted, so that you can use special
characters as separator, like \n or \t. The default separator is the
space character ” “. This is an example showing such separator string
change:

$ nodeset -e --separator='\n' node[0-3]
node0
node1
node2
node3

The -O, --output-format option can be used to format output results of
most nodeset commands. The string passed to this option is used as a base
format pattern applied to each node or each result (depending on the command
and other options requested). The default format string is “%s”. Formatting
is performed using the Python builtin string formatting operator, so you must
use one format operator of the right type (%s is guaranteed to work in all
cases). Here is an output formatting example when using the expand command:

$ nodeset --output-format='%s-ipmi' -e node[1-2]x[1-2]
node1x1-ipmi node1x2-ipmi node2x1-ipmi node2x2-ipmi

Output formatting and separator combined can be useful when using the expand
command, as shown here:

$ nodeset -O '%s-ipmi' -S '\n' -e node[1-2]x[1-2]
node1x1-ipmi
node1x2-ipmi
node2x1-ipmi
node2x2-ipmi

When using the output formatting option along with the folding command, the
format is applied to each node but the result is still folded:

$ nodeset -O '%s-ipmi' -f mgmt1 mgmt2 login[1-4]
login[1-4]-ipmi,mgmt[1-2]-ipmi

Stepping and auto-stepping

The nodeset command, as does the clush command, is able to recognize by
default a factorized notation for range sets of the form a-b/c, indicating a
list of integers starting from a, less than or equal to b with the
increment (step) c.

For example, the 0-6/2 format indicates a range of 0-6 stepped by 2; that
is 0,2,4,6:

$ nodeset -e node[0-6/2]
node0 node2 node4 node6

However, by default, nodeset never uses this stepping notation in output
results, as other cluster tools seldom if ever support this feature. Thus, to
enable such factorized output in nodeset, you must specify
--autostep=AUTOSTEP to set an auto step threshold number when folding
nodesets (ie. when using -f or -r). This threshold number
(AUTOSTEP) is the minimum occurrence of equally-spaced integers needed to
enable auto-stepping.

For example:

$ nodeset -f --autostep=3 node1 node3 node5
node[1-5/2]

$ nodeset -f --autostep=4 node1 node3 node5
node[1,3,5]

It is important to note that resulting node sets with enabled auto-stepping
never create overlapping ranges, for example:

$ nodeset -f --autostep=3 node1 node5 node9 node13
node[1-13/4]

$ nodeset -f --autostep=3 node1 node5 node7 node9 node13
node[1,5-9/2,13]

However, any ranges given as input may still overlap (in this case, nodeset
will automatically spread them out so that they do not overlap), for example:

$ nodeset -f --autostep=3 node[1-13/4,7]
node[1,5-9/2,13]

A minimum node count threshold percentage before autostep is enabled may
also be specified as autostep value (or auto which is currently 100%). In
the two following examples, only the first 4 of the 7 indexes may be
represented using the step syntax (57% of them):

$ nodeset -f --autostep=50% node[1,3,5,7,34,39,99]
node[1-7/2,34,39,99]

$ nodeset -f --autostep=90% node[1,3,5,7,34,39,99]
node[1,3,5,7,34,39,99]

Zero-padding

Sometimes, cluster node names are padded with zeros (eg. node007). With
nodeset, when leading zeros are used, resulting host names or node sets
are automatically padded with zeros as well. For example:

$ nodeset -e node[08-11]
node08 node09 node10 node11

$ nodeset -f node001 node002 node003 node005
node[001-003,005]

Zero-padding and stepping (as seen in Stepping and auto-stepping) together are
also supported, for example:

$ nodeset -e node[000-012/4]
node000 node004 node008 node012

Nevertheless, care should be taken when dealing with padding, as a zero-padded
node name has priority over a normal one, for example:

$ nodeset -f node1 node02
node[01-02]

To clarify, nodeset will always try to coalesce node names by their
numerical index first (without taking care of any zero-padding), and then will
use the first zero-padding rule encountered. In the following example, the
first zero-padding rule found is node01‘s one:

$ nodeset -f node01 node002
node[01-02]

That said, you can see it is not possible to mix node01 and node001 in the
same node set (not supported by the NodeSet class), but that would
be a tricky case anyway!

Leading and trailing digits

Version 1.7 introduces improved support for bracket leading and trailing
digits. Those digits are automatically included within the range set,
allowing all node set operations to be fully supported.

Examples with bracket leading digits:

$ nodeset -f node-00[00-99]
node-[0000-0099]

$ nodeset -f node-01[01,09,42]
node-[0101,0109,0142]

Examples with bracket trailing digits:

$ nodeset -f node-[1-2]0-[0-2]5
node-[10,20]-[05,15,25]

Examples with both bracket leading and trailing digits:

$ nodeset -f node-00[1-6]0
node-[0010,0020,0030,0040,0050,0060]

$ nodeset --autostep=auto -f node-00[1-6]0
node-[0010-0060/10]

Still, using this syntax can be error-prone especially if used with node sets
without 0-padding or with the /step syntax and also requires additional
processing by the parser. In general, we recommend writing the whole rangeset
inside the brackets.

Warning

Using the step syntax (seen above) within a bracket-delimited
range set is not compatible with trailing digits. For instance, this is
not supported: node-00[1-6/2]0

Arithmetic operations

As a preamble to this section, keep in mind that all operations can be
repeated/mixed within the same nodeset command line, they will be
processed from left to right.

Union operation

Union is the easiest arithmetic operation supported by nodeset: there is
no special command line option for that, just provide several node sets and
the union operation will be computed, for example:

$ nodeset -f node[1-3] node[4-7]
node[1-7]

$ nodeset -f node[1-3] node[2-7] node[5-8]
node[1-8]

Other operations

As an extension to the above, other arithmetic operations are available by
using the following command-line options (working set is the node set
currently processed on the command line – always from left to right):

	nodeset command option
	Operation

	-x NODESET, --exclude=NODESET
	compute a new set with elements
in working set but not in
NODESET

	-i NODESET, --intersection=NODESET
	compute a new set with elements
common to working set and
NODESET

	-X NODESET, --xor=NODESET
	compute a new set with elements
that are in exactly one of the
working set and NODESET

If rangeset mode (-R) is turned on, all arithmetic operations are
supported by replacing NODESET by any RANGESET. See
Range sets for more info about nodeset‘s rangeset mode.

Arithmetic operations usage examples:

$ nodeset -f node[1-9] -x node6
node[1-5,7-9]

$ nodeset -f node[1-9] -i node[6-11]
node[6-9]

$ nodeset -f node[1-9] -X node[6-11]
node[1-5,10-11]

$ nodeset -f node[1-9] -x node6 -i node[6-12]
node[7-9]

Extended patterns support

nodeset does also support arithmetic operations through its “extended
patterns” (inherited from NodeSet extended pattern feature, see
Extended String Pattern, there is an example of use:

$ nodeset -f node[1-4],node[5-9]
node[1-9]

$ nodeset -f node[1-9]\!node6
node[1-5,7-9]

$ nodeset -f node[1-9]\&node[6-12]
node[6-9]

$ nodeset -f node[1-9]^node[6-11]
node[1-5,10-11]

Special operations

A few special operations are currently available: node set slicing, splitting
on a predefined node count, splitting non-contiguous subsets, choosing fold
axis (for multidimensional node sets) and picking N nodes randomly. They are
all explained below.

Slicing

Slicing is a way to select elements from a node set by their index (or from a
range set when using -R toggle option, see Range sets. In
this case actually, and because nodeset‘s underlying NodeSet class
sorts elements as observed after folding (for example), the word set may
sound like a stretch of language (a set isn’t usually sorted). Indeed,
NodeSet further guarantees that its iterator will traverse the set
in order, so we should see it as a ordered set. The following simple example
illustrates this sorting behavior:

$ nodeset -f b2 b1 b0 b c a0 a
a,a0,b,b[0-2],c

Slicing is performed through the following command-line option:

	nodeset command option
	Operation

	-I RANGESET, --slice=RANGESET
	slicing: get sliced off result,
selecting elements from provided
rangeset’s indexes

Some slicing examples are shown below:

$ nodeset -f -I 0 node[4-8]
node4

$ nodeset -f --slice=0 bnode[0-9] anode[0-9]
anode0

$ nodeset -f --slice=1,4,7,9,15 bnode[0-9] anode[0-9]
anode[1,4,7,9],bnode5

$ nodeset -f --slice=0-18/2 bnode[0-9] anode[0-9]
anode[0,2,4,6,8],bnode[0,2,4,6,8]

Splitting into n subsets

Splitting a node set into several parts is often useful to get separate groups
of nodes, for instance when you want to check MPI comm between nodes, etc.
Based on NodeSet.split() method, the nodeset command provides the
following additional command-line option (since v1.4):

	nodeset command option
	Operation

	--split=MAXSPLIT
	splitting: split result into a number of
subsets

MAXSPLIT is an integer specifying the number of separate groups of nodes
to compute. Input’s node set is divided into smaller groups, whenever possible
with the same size (only the last ones may be smaller due to rounding).
Obviously, if MAXSPLIT is higher than or equal to the number N of elements
in the set, then the set is split to N single sets.

Some node set splitting examples:

$ nodeset -f --split=4 node[0-7]
node[0-1]
node[2-3]
node[4-5]
node[6-7]

$ nodeset -f --split=4 node[0-6]
node[0-1]
node[2-3]
node[4-5]
node6

$ nodeset -f --split=10000 node[0-4]
foo0
foo1
foo2
foo3
foo4

$ nodeset -f --autostep=3 --split=2 node[0-38/2]
node[0-18/2]
node[20-38/2]

Splitting off non-contiguous subsets

It can be useful to split a node set into several contiguous subsets (with
same pattern name and contiguous range indexes, eg. node[1-100] or
dc[1-4]node[1-100]). The --contiguous option allows you to do that. It
is based on NodeSet.contiguous() method, and should be specified with
standard commands (fold, expand, count, regroup). The following example shows
how to split off non-contiguous subsets of a specified node set, and to
display each resulting contiguous node set in a folded manner to separated
lines:

$ nodeset -f --contiguous node[1-100,200-300,500]
node[1-100]
node[200-300]
node500

Similarly, the following example shows how to display each resulting
contiguous node set in an expanded manner to separate lines:

$ nodeset -e --contiguous node[1-9,11-19]
node1 node2 node3 node4 node5 node6 node7 node8 node9
node11 node12 node13 node14 node15 node16 node17 node18 node19

Choosing fold axis (nD)

The default folding behavior for multidimensional node sets is to fold along
all nD axis. However, other cluster tools barely support nD nodeset syntax,
so it may be useful to fold along one (or a few) axis only. The --axis
option allows you to specify indexes of dimensions to fold. Using this
option, rangesets of unspecified axis there won’t be folded. Please note
however that the obtained result may be suboptimal, this is because
NodeSet algorithms are optimized for folding along all axis.
--axis value is a set of integers from 1 to n representing selected nD
axis, in the form of a number or a rangeset. A common case is to restrict
folding on a single axis, like in the following simple examples:

$ nodeset --axis=1 -f node1-ib0 node2-ib0 node1-ib1 node2-ib1
node[1-2]-ib0,node[1-2]-ib1

$ nodeset --axis=2 -f node1-ib0 node2-ib0 node1-ib1 node2-ib1
node1-ib[0-1],node2-ib[0-1]

Because a single nodeset may have several different dimensions, axis indices
are silently truncated to fall in the allowed range. Negative indices are
useful to fold along the last axis whatever number of dimensions used:

$ nodeset --axis=-1 -f comp-[1-2]-[1-36],login-[1-2]
comp-1-[1-36],comp-2-[1-36],login-[1-2]

Picking N node(s) at random

Use --pick with a maximum number of nodes you wish to pick randomly from
the resulting node set (or from the resulting range set with -R):

$ nodeset --pick=1 -f node11 node12 node13
node12
$ nodeset --pick=2 -f node11 node12 node13
node[11,13]

Node groups

This section tackles the node groups feature available more particularly
through the nodeset command-line tool. The ClusterShell library defines a
node groups syntax and allow you to bind these group sources to your
applications (cf. node groups configuration). Having
those group sources, group provisioning is easily done through user-defined
external shell commands. Thus, node groups might be very dynamic and their
nodes might change very often. However, for performance reasons, external call
results are still cached in memory to avoid duplicate external calls during
nodeset execution. For example, a group source can be bound to a resource
manager or a custom cluster database.

For further details about using node groups in Python, please see
Node groups. For advanced usage, you should also be able to
define your own group source directly in Python (cf.
Overriding default groups configuration).

Node group expression rules

The general node group expression is @source:groupname. For example,
@slurm:bigmem represents the group bigmem of the group source slurm.
Moreover, a shortened expression is available when using the default group
source (defined by configuration); for instance @compute represents the
compute group of the default group source.

Valid group source names and group names can contain alphanumeric characters,
hyphens and underscores (no space allowed). Indeed, same rules apply to node
names.

Listing group sources

As already mentioned, the following nodeset command is available to list
configured group sources and also display the default group source (unless
-q is provided):

$ nodeset --groupsources
local (default)
genders
slurm

Listing group names

If the list external shell command is configured (see
node groups configuration), it is possible to list
available groups from the default source with the following commands:

$ nodeset -l
@mgnt
@mds
@oss
@login
@compute

Or, to list groups from a specific group source, use -l in conjunction
with -s (or –groupsource):

$ nodeset -l -s slurm
@slurm:parallel
@slurm:cuda

Or, to list groups from all available group sources, use -L (or
–list-all):

$ nodeset -L
@mgnt
@mds
@oss
@login
@compute
@slurm:parallel
@slurm:cuda

You can also use nodeset -ll or nodeset -LL to see each group’s
associated node sets.

Using node groups in basic commands

The use of node groups with the nodeset command is very straightforward.
Indeed, any group name, prefixed by @ as mentioned above, can be used in
lieu of a node name, where it will be substituted for all nodes in that group.

A first, simple example is a group expansion (using default source) with
nodeset:

$ nodeset -e @oss
node40 node41 node42 node43 node44 node45

The nodeset count command works as expected:

$ nodeset -c @oss
6

Also nodeset folding command can always resolve node groups:

$ nodeset -f @oss
node[40-45]

There are usually two ways to use a specific group source (need to be properly
configured):

$ nodeset -f @slurm:parallel
node[50-81]

$ nodeset -f -s slurm @parallel
node[50-81]

Finding node groups

As an extension to the list command, you can search node groups that a
specified node set belongs to with nodeset -l[ll] as follow:

$ nodeset -l node40
@all
@oss

$ nodeset -ll node40
@all node[1-159]
@oss node[40-45]

This feature is implemented with the help of the NodeSet.groups()
method (see Finding node groups for further details).

Resolving node groups

If needed group configuration conditions are met (cf. node groups
configuration), you can try group lookups thanks to the -r,
--regroup command. This feature is implemented with the help of the
NodeSet.regroup() method (see Regrouping node sets for
further details). Only exact matching groups are returned (all containing
nodes needed), for example:

$ nodeset -r node[40-45]
@oss

$ nodeset -r node[0,40-45]
@mgnt,@oss

When resolving node groups, nodeset always returns the largest groups
first, instead of several smaller matching groups, for instance:

$ nodeset -ll
@login node[50-51]
@compute node[52-81]
@intel node[50-81]

$ nodeset -r node[50-81]
@intel

If no matching group is found, nodeset -r still returns folded result (as
does -f):

$ nodeset -r node40 node42
node[40,42]

Indexed node groups

Node groups are themselves some kind of group sets and can be indexable. To
use this feature, node groups external shell commands need to return indexed
group names (automatically handled by the library as needed). For example,
take a look at these indexed node groups:

$ nodeset -l
@io1
@io2
@io3

$ nodeset -f @io[1-3]
node[40-45]

Arithmetic operations on node groups

Arithmetic and special operations (as explained for node sets in
nodeset-arithmetic and nodeset-special are also supported with node groups.
Any group name can be used in lieu of a node set, where it will be substituted
for all nodes in that group before processing requested operations. Some
typical examples are:

$ nodeset -f @lustre -x @mds
node[40-45]

$ nodeset -r @lustre -x @mds
@oss

$ nodeset -r -a -x @lustre
@compute,@login,@mgnt

More advanced examples, with the use of node group sets, follow:

$ nodeset -r @io[1-3] -x @io2
@io[1,3]

$ nodeset -f -I0 @io[1-3]
node40

$ nodeset -f --split=3 @oss
node[40-41]
node[42-43]
node[44-45]

$ nodeset -r --split=3 @oss
@io1
@io2
@io3

Extended patterns support with node groups

Even for node groups, the nodeset command supports arithmetic operations
through its extended pattern feature (see
Extended String Pattern).
A first example illustrates node groups intersection, that can be used in
practice to get nodes available from two dynamic group sources at a given
time:

$ nodeset -f @db:prod\&@compute

The following fictive example computes a folded node set containing nodes
found in node group @gpu and @slurm:bigmem, but not in both, minus
the nodes found in odd @chassis groups from 1 to 9 (computed from left to
right):

$ nodeset -f @gpu^@slurm:bigmem\!@chassis[1-9/2]

Also, version 1.7 introduces a notation extension @* (or @SOURCE:*)
that has been added to quickly represent all nodes (please refer to
Selecting all nodes for more details).

Range sets

Working with range sets

By default, the nodeset command works with node or group sets and its
functionality match most NodeSet class methods. Similarly, nodeset
will match RangeSet methods when you make use of the -R option
switch. In that case, all operations are restricted to numerical ranges. For
example, to expand the range “1-10”, you should use:

$ nodeset -e -R 1-10
1 2 3 4 5 6 7 8 9 10

Almost all commands and operations available for node sets are also available
with range sets. The only restrictions are commands and operations related to
node groups. For instance, the following command options are not available
with nodeset -R:

	-r, --regroup as this feature is obviously related to node groups,

	-a / --all as the all external call is also related to node groups.

Using range sets instead of node sets doesn’t change the general command
usage, like the need of one command option presence (cf. nodeset-commands), or
the way to give some input (cf. nodeset-stdin), for example:

$ echo 3 2 36 0 4 1 37 | nodeset -fR
0-4,36-37

$ echo 0-8/4 | nodeset -eR -S'\n'
0
4
8

Stepping and auto-stepping are supported (cf. Stepping and auto-stepping) and
also zero-padding (cf. nodeset-zpad), which are both RangeSet class
features anyway.

The following examples illustrate these last points:

$ nodeset -fR 03 05 01 07 11 09
01,03,05,07,09,11

$ nodeset -fR --autostep=3 03 05 01 07 11 09
01-11/2

Arithmetic and special operations

All arithmetic operations, as seen for node sets (cf. nodeset-arithmetic), are
available for range sets, for example:

$ nodeset -fR 1-14 -x 10-20
1-9

$ nodeset -fR 1-14 -i 10-20
10-14

$ nodeset -fR 1-14 -X 10-20
1-9,15-20

For now, there is no extended patterns syntax for range sets as for node
sets (cf. nodeset-extended-patterns). However, as the union operator ,
is available natively by design, such expressions are still allowed:

$ nodeset -fR 4-10,1-2
1-2,4-10

Besides arithmetic operations, special operations may be very convenient for
range sets also. Below is an example with -I / --slice (cf.
nodeset-slice):

$ nodeset -fR -I 0 100-131
100

$ nodeset -fR -I 0-15 100-131
100-115

There is another special operation example with --split (cf.
nodeset-splitting-n):

$ nodeset -fR --split=2 100-131
100-115
116-131

Finally, an example of the special operation --contiguous (cf.
nodeset-splitting-contiguous):

$ nodeset -f -R --contiguous 1-9,11,13-19
1-9
11
13-19

rangeset alias

When using nodeset with range sets intensively (eg. for scripting), it may
be convenient to create a local command alias, as shown in the following
example (Bourne shell), making it sort of a super seq(1) [http://linux.die.net/man/1/seq] command:

$ alias rangeset='nodeset -R'
$ rangeset -e 0-8/2
0 2 4 6 8

	[1]	SLURM is an open-source resource manager (https://computing.llnl.gov/linux/slurm/)

 Copyright 2016, Stephane Thiell.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	clustershell 1.7.2 documentation

 	Tools

clush

clush is a program for executing commands in parallel on a cluster and for
gathering their results. It can execute commands interactively or can be used
within shell scripts and other applications. It is a partial front-end to the
Task class of the ClusterShell library (cf. Structure of Task).
clush currently makes use of the Ssh worker of ClusterShell that only
requires ssh(1) (we tested with OpenSSH SSH client).

Some features of clush command line tool are:

	two modes of parallel cluster commands execution:
	flat mode: sliding window of local or ssh(1) commands

	tree mode: commands propagated to the targets through a tree of
pre-configured gateways; gateways are then using a sliding window of local
or ssh(1) commands to reach the targets (if the target count per gateway
is greater than the fanout value)

	smart display of command results (integrated output gathering, sorting by
node, nodeset or node groups)

	standard input redirection to remote nodes

	files copying in parallel

	pdsh [1] options backward compatibility

clush can be started non-interactively to run a shell command, or can be
invoked as an interactive shell. Both modes are discussed here (clush-oneshot
clush-interactive).

Target and filter nodes

clush offers different ways to select or filter target nodes through command
line options or files containing a list of hosts.

Command line options

The -w option allows you to specify remote hosts by using ClusterShell
NodeSet syntax, including the node groups @group special syntax
(cf. Node group expression rules) and the Extended String Patterns syntax (see
Extended String Pattern) to benefits from NodeSet
basic arithmetics (like @Agroup&@Bgroup). Additionally, the -x option
allows you to exclude nodes from remote hosts list (the same NodeSet syntax
can be used here). Nodes exclusion has priority over nodes addition.

Using node groups

If you have ClusterShell node groups configured on your
cluster, any node group syntax may be used in place of nodes for -w as
well as -x.

For example:

$ clush -w @rhel6 cat /proc/loadavg
node26: 0.02 0.01 0.00 1/202 23042

For pdsh backward compatibility, clush supports two -g and -X
options to respectively select and exclude nodes group(s), but only specified
by omitting any “@” group prefix (see example below). In general, though, it
is advised to use the @-prefixed group syntax as the non-prefixed notation
is only recognized by clush but not by other tools like nodeset.

For example:

$ clush -g rhel6 cat /proc/loadavg
node26: 0.02 0.01 0.00 1/202 23033

Selecting all nodes

The special option -a (without argument) can be used to select all
nodes, in the sense of ClusterShell node groups (see
node groups configuration for more details on special
all external shell command upcall). If not properly configured, the
-a option may lead to a runtime error like:

clush: External error: Not enough working external calls (all, or map +
list) defined to get all node

Picking node(s) at random

Use --pick with a maximum number of nodes you wish to pick randomly from
the targeted node set. clush will then run only on selected node(s). The
following example will run a script on a single random node picked from the
@compute group:

$ clush -w @compute --pick=1 ./nonreg-single-client-fs-io.sh

Host files

The option --hostfile (or --machinefile) may be used to specify a
path to a file containing a list of single hosts, node sets or node groups,
separated by spaces and lines. It may be specified multiple times (one per
file).

For example:

$ clush --hostfile ./host_file -b systemctl is-enabled httpd

This option has been added as backward compatibility with other parallel shell
tools. Indeed, ClusterShell provides a preferred way to provision node sets
from node group sources and flat files to all cluster tools using
NodeSet (including clush). Please see node groups
configuration.

Note

Use --debug or -d to see resulting node sets from host
files.

Tree mode

ClusterShell Tree mode is a major horizontal scalability improvement by
enabling a hierarchical command propagation scheme.

The Tree mode of ClusterShell has been the subject of this paper [https://www.kernel.org/doc/ols/2012/ols2012-thiell.pdf] presented
at the Ottawa Linux Symposium Conference in 2012 and at the PyHPC 2013
workshop in Denver, USA.

The Tree mode is implemented at the library level, so that all applications
using ClusterShell may benefits from it. However, this section describes how
to use the tree mode with the clush command only.

Configuration

The system-wide library configuration file /etc/clustershell/topology.conf
defines the routes of default command propagation tree. It is recommended that
all connections between parent and children nodes are carefully
pre-configured, for example, to avoid any SSH warnings when connecting (if
using the default SSH remote worker, of course).

The content of the topology.conf file should look like this:

[routes]
rio0: rio[10-13]
rio[10-11]: rio[100-240]
rio[12-13]: rio[300-440]

This file defines the following topology graph:

rio0
|- rio[10-11]
| `- rio[100-240]
`- rio[12-13]
 `- rio[300-440]

At runtime, ClusterShell will pick an initial propagation tree from this
topology graph definition and the current root node. Multiple admin/root
nodes may be defined in the file.

Note

The algorithm used in Tree mode does not rely on gateway system
hostnames anymore. In topology.conf, just use the hosts or aliases needed
to connect to each node.

Enabling tree mode

Since version 1.7, the tree mode is enabled by default when a configuration
file is present. When the configuration file
/etc/clustershell/topology.conf exists, clush will use it by default for
target nodes that are defined there. The topology file path can be changed
using the --topology command line option.

Note

If using clush -d (debug option), clush will display an ASCII
representation of the initial propagation tree used. This is useful when
working on Tree mode configuration.

More Tree command line options

The --remote=yes|no command line option controls the remote execution
behavior:

	Default is yes, that will make clush establish connections up to the
leaf nodes using a distant worker like ssh.

	Changing it to no will make clush establish connections up to the leaf
parent nodes only, then the commands are executed locally on the gateways
(like if it would be with --worker=exec on the gateways themselves).
This execution mode allows users to schedule remote commands on gateways
that take a node as an argument. On large clusters, this is useful to spread
the load and resources used of one-shot monitoring, IPMI, or other commands
on gateways. A simple example of use is:

$ clush -w node[100-199] --remote=no /usr/sbin/ipmipower -h %h-ipmi -s

This command is also valid if you don’t have any tree configured, because
in that case, --remote=no is an alias of --worker=exec worker.

The --grooming command line option allows users to change the grooming
delay (float, in seconds). This feature allows gateways to aggregate responses
received within a certain timeframe before transmitting them back to the root
node in a batch fashion. This contributes to reducing the load on the root
node by delegating the first steps of this CPU intensive task to the gateways.

Debugging Tree mode

To debug Tree mode, you can define the following environment variable before
running clush (or any other applications using ClusterShell):

$ export CLUSTERSHELL_GW_LOG_LEVEL=DEBUG (default value is INFO)
$ export CLUSTERSHELL_GW_LOG_DIR=/tmp (default value is /tmp)

This will generate log files of the form $HOSTNAME.gw.log in
CLUSTERSHELL_GW_LOG_DIR.

Non-interactive (or one-shot) mode

When clush is started non-interactively, the command is executed on the
specified remote hosts in parallel (given the current fanout value and the
number of commands to execute (see fanout library settings in
Configuring the Task object).

Output gathering options

If option -b or --dshbak is specified, clush waits for command
completion while displaying a progress indicator and
then displays gathered output results. If standard output is redirected to a
file, clush detects it and disable any progress indicator.

The following is a simple example of clush command used to execute uname
-r on node40, node41 and node42, wait for their completion and finally
display digested output results:

$ clush -b -w node[40-42] uname -r

node[40-42]

2.6.35.6-45.fc14.x86_64

It is common to cancel such command execution because a node is hang. When
using pdsh and dshbak, due to the pipe, all nodes output will be lost,
even if all nodes have successfully run the command. When you hit CTRL-C with
clush, the task is canceled but received output is not lost:

$ clush -b -w node[1-5] uname -r
Warning: Caught keyboard interrupt!

node[2-4] (3)

2.6.31.6-145.fc11

node5

2.6.18-164.11.1.el5
Keyboard interrupt (node1 did not complete).

Performing diff of cluster-wide outputs

Since version 1.6, you can use the --diff clush option to show
differences between common outputs. This feature is implemented using Python
unified diff [http://docs.python.org/library/difflib.html#difflib.unified_diff]. This special option implies -b (gather common stdout
outputs) but you don’t need to specify it. Example:

$ clush -w node[40-42] --diff dmidecode -s bios-version
--- node[40,42] (2)
+++ node41
@@ -1,1 +1,1 @@
-1.0.5S56
+1.1c

A nodeset is automatically selected as the “reference nodeset” according to
these criteria:

	lowest command return code (to discard failed commands)

	largest nodeset with the same output result

	otherwise the first nodeset is taken (ordered (1) by name and (2) lowest range indexes)

Standard input bindings

Unless option --nostdin is specified, clush detects when its standard
input is connected to a terminal (as determined by isatty(3)). If actually
connected to a terminal, clush listens to standard input when commands are
running, waiting for an Enter key press. Doing so will display the status of
current nodes. If standard input is not connected to a terminal, and unless
option --nostdin is specified, clush binds the standard input of the
remote commands to its own standard input, allowing scripting methods like:

$ echo foo | clush -w node[40-42] -b cat

node[40-42]

foo

Another stdin-bound clush usage example:

$ ssh node10 'ls /etc/yum.repos.d/*.repo' | clush -w node[11-14] -b xargs ls

node[11-14] (4)

/etc/yum.repos.d/cobbler-config.repo

Progress indicator

In output gathering mode, clush will display a live
progress indicator as a simple but convenient way to follow the completion of
parallel commands. It can be disabled just by using the -q or --quiet
options. The progress indicator will appear after 1 to 2 seconds and should
look like this:

clush: <command_completed>/<command_total>

If writing is performed to clush standard input, like in command |
clush, the live progress indicator will display the global bandwidth of data
written to the target nodes.

Finally, the special option --progress can be used to force the display of
the live progress indicator. Using this option may interfere with some command
outputs, but it can be useful when using stdin while remote commands are
silent. As an example, the following command will copy a local file to
node[1-3] and display the global write bandwidth to the target nodes:

$ dd if=/path/to/local/file | clush -w node[1-3] --progress 'dd of=/path/to/remote/file'
clush: 0/3 write: 212.27 MiB/s

Interactive mode

If a command is not specified, clush runs interactively. In this mode,
clush uses the GNU readline library to read command lines from the
terminal. Readline provides commands for searching through the command
history for lines containing a specified string. For instance, you can type
Control-R to search in the history for the next entry matching the search
string typed so far.

Single-character interactive commands

clush also recognizes special single-character prefixes that allows the user
to see and modify the current nodeset (the nodes where the commands are
executed). These single-character interactive commands are detailed below:

	Interactive special commands
	Comment

	clush> ?
	show current nodeset

	clush> +<NODESET>
	add nodes to current nodeset

	clush> -<NODESET>
	remove nodes from current nodeset

	clush> !<COMMAND>
	execute <COMMAND> on the local system

	clush> =
	toggle the ouput format (gathered or standard
mode)

To leave an interactive session, type quit or Control-D. As of version
1.6, it is not possible to cancel a command while staying in clush
interactive session: for instance, Control-C is not supported and will abort
current clush interactive command (see ticket #166 [https://github.com/cea-hpc/clustershell/issues/166]).

Example of clush interactive session:

$ clush -w node[11-14] -b
Enter 'quit' to leave this interactive mode
Working with nodes: node[11-14]
clush> uname

node[11-14] (4)

Linux
clush> !pwd
LOCAL: /root
clush> -node[11,13]
Working with nodes: node[12,14]
clush> uname

node[12,14] (2)

Linux
clush>

The interactive mode and commands described above are subject to change and
improvements in future releases. Feel free to open an enhancement ticket [https://github.com/cea-hpc/clustershell/issues/new] if
you use the interactive mode and have some suggestions.

File copying mode

When clush is started with the -c or --copy option, it will
attempt to copy specified file and/or directory to the provided target cluster
nodes. If the --dest option is specified, it will put the copied files
or directory there.

Here are some examples of file copying with clush:

$ clush -v -w node[11-12] --copy /tmp/foo
`/tmp/foo' -> node[11-12]:`/tmp'

$ clush -v -w node[11-12] --copy /tmp/foo /tmp/bar
`/tmp/bar' -> aury[11-12]:`/tmp'
`/tmp/foo' -> aury[11-12]:`/tmp'

$ clush -v -w node[11-12] --copy /tmp/foo --dest /var/tmp/
`/tmp/foo' -> node[11-12]:`/var/tmp/'

Reverse file copying mode

When clush is started with the --rcopy option, it will attempt to
retrieve specified file and/or directory from provided cluster nodes. If the
--dest option is specified, it must be a directory path where the files
will be stored with their hostname appended. If the destination path is not
specified, it will take the first file or dir basename directory as the local
destination, example:

$ clush -v -w node[11-12] --rcopy /tmp/foo
node[11-12]:`/tmp/foo' -> `/tmp'

$ ls /tmp/foo.*
/tmp/foo.node11 /tmp/foo.node12

Other options

Overriding clush.conf settings

clush default settings are found in a configuration described in
clush configuration. To override any settings, use the
--option command line option (or -O for the shorter version), and
repeat as needed. Here is a simple example to disable the use colors in the
output nodeset header:

$ clush -O color=never -w node[11-12] -b echo ok

node[11-12] (2)

ok

Worker selection

By default, clush is using the default library worker configuration when
running commands or copying files. In most cases, this is ssh (See
Changing default worker for default worker selection).

Worker selection can be performed at runtime thanks to --worker command
line option (or -R for the shorter version in order to be compatible with
pdsh remote command selection option):

$ clush -w node[11-12] --worker=rsh echo ok
node11: ok
node12: ok

By default, ClusterShell supports the following worker identifiers:

	exec: this local worker supports parallel command execution, doesn’t
rely on any external tool and provides command line placeholders described
below:

	%h and %host are substitued with each target hostname

	%hosts is substitued with the full target nodeset

	%n and %rank are substitued with the remote rank (0 to n-1)

For example, the following would request the exec worker to locally run
multiple ipmitool commands across the hosts foo[0-10] and automatically
aggregate output results (-b):

$ clush -R exec -w foo[0-10] -b ipmitool -H %h-ipmi chassis power status

foo[0-10] (11)

Chassis Power is on

	rsh: remote worker based on rsh

	ssh: remote worker based on ssh (default)

	pdsh: remote worker based on pdsh that requires pdsh to be
installed; doesn’t provide write support (eg. you cannot cat file | clush
--worker pdsh); it is primarily an 1-to-n worker example.

	[1]	LLNL parallel remote shell utility
(https://computing.llnl.gov/linux/pdsh.html)

 Copyright 2016, Stephane Thiell.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	clustershell 1.7.2 documentation

 	Tools

clubak

Overview

clubak is another utility provided with the ClusterShell library that try to
gather and sort such dsh-like output:

node17: MD5 (cstest.py) = 62e23bcf2e11143d4875c9826ef6183f
node14: MD5 (cstest.py) = 62e23bcf2e11143d4875c9826ef6183f
node16: MD5 (cstest.py) = e88f238673933b08d2b36904e3a207df
node15: MD5 (cstest.py) = 62e23bcf2e11143d4875c9826ef6183f

If file content is made of such output, you got the following result:

$ clubak -b < file

node[14-15,17] (3)

 MD5 (cstest.py) = 62e23bcf2e11143d4875c9826ef6183f

node16

 MD5 (cstest.py) = e88f238673933b08d2b36904e3a207df

Or with -L display option to disable header block:

$ clubak -bL < file
node[14-15,17]: MD5 (cstest.py) = 62e23bcf2e11143d4875c9826ef6183f
node16: MD5 (cstest.py) = e88f238673933b08d2b36904e3a207df

Indeed, clubak formats text from standard input containing lines of the form
node: output. It is fully backward compatible with dshbak(1) available
with pdsh but provides additonal features. For instance, clubak always
displays its results sorted by node/nodeset.

But you do not need to execute clubak when using clush as all output
formatting features are already included in clush (see clush -b / -B / -L
examples, Non-interactive (or one-shot) mode). There are several advantages of having
clubak features included in clush: for example, it is possible, with
clush, to still get partial results when interrupted during command
execution (eg. with Control-C), thing not possible by just piping commands
together.

Most clubak options are the same as clush. For instance, to try to resolve
node groups in results, use -r, --regroup:

$ clubak -br < file

Like clush, clubak uses the ClusterShell.MsgTree module of the ClusterShell
library.

Tree trace mode (-T)

A special option -T, --tree, only available with clubak, can switch on
MsgTree trace mode (all keys/nodes are kept for each message element
of the tree, thus allowing special output display). This mode has been first
added to replace padb [1] in some cases to display a whole cluster job
digested backtrace.

For example:

$ cat trace_test
node3: first_func()
node1: first_func()
node2: first_func()
node5: first_func()
node1: second_func()
node4: first_func()
node3: bis_second_func()
node2: second_func()
node5: second_func()
node4: bis_second_func()

$ cat trace_test | clubak -TL
node[1-5]:
 first_func()
node[1-2,5]:
 second_func()
node[3-4]:
 bis_second_func()

	[1]	padb, a parallel application debugger (http://padb.pittman.org.uk/)

 Copyright 2016, Stephane Thiell.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	clustershell 1.7.2 documentation

Programming Guide

This part provides programming information for using ClusterShell in
Python applications. It is divided into two sections: node sets handling and
cluster task management, in that order, because managing cluster tasks
requires some knowledge of how to deal with node sets. Each section also
describes the conceptual structures of ClusterShell and provides examples of
how to use them.

This part is intended for intermediate and advanced programmers who are
familiar with Python programming and basic concepts of high-performance
computing (HPC).

	Node sets handling
	NodeSet class

	Node groups

	NodeSet object serialization

	Range sets
	RangeSet class

	RangeSetND class

	Task management
	Structure of Task

	Using Task objects

	Configuring explicit Shell Worker objects

	Programming Examples
	Remote command example (sequential mode)

	Remote command example with live output (event-based mode)

	check_nodes.py example script

	Using NodeSet with Parallel Python Batch script using SLURM

 Copyright 2016, Stephane Thiell.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	clustershell 1.7.2 documentation

 	Programming Guide

Node sets handling

NodeSet class

NodeSet is a class to represent an ordered set of node names
(optionally indexed). It’s a convenient way to deal with cluster nodes and
ease their administration. NodeSet is implemented with the help of
two other ClusterShell public classes, RangeSet and
RangeSetND, which implement methods to manage a set of numeric
ranges in one or multiple dimensions. NodeSet, RangeSet
and RangeSetND APIs match standard Python sets. A command-line
interface (nodeset) which implements most of NodeSet
features, is also available.

Other classes of the ClusterShell library makes use of the NodeSet
class when they come to deal with distant nodes.

Using NodeSet

If you are used to Python sets [http://docs.python.org/library/sets.html], NodeSet interface will be easy
for you to learn. The main conceptual difference is that NodeSet
iterators always provide ordered results (and also
NodeSet.__getitem__() by index or slice is allowed). Furthermore,
NodeSet provides specific methods like
NodeSet.split(), NodeSet.contiguous() (see below), or
NodeSet.groups(), NodeSet.regroup() (these last two are
related to Node groups). The following code snippet shows you
a basic usage of the NodeSet class:

>>> from ClusterShell.NodeSet import NodeSet
>>> nodeset = NodeSet()
>>> nodeset.add("node7")
>>> nodeset.add("node6")
>>> print nodeset
node[6-7]

NodeSet class provides several object constructors:

>>> print NodeSet("node[1-5]")
node[1-5]
>>> print NodeSet.fromlist(["node1", "node2", "node3"])
node[1-3]
>>> print NodeSet.fromlist(["node[1-5]", "node[6-10]"])
node[1-10]
>>> print NodeSet.fromlist(["clu-1-[1-4]", "clu-2-[1-4]"])
clu-[1-2]-[1-4]

All corresponding Python sets operations are available, for example:

>>> from ClusterShell.NodeSet import NodeSet
>>> ns1 = NodeSet("node[10-42]")
>>> ns2 = NodeSet("node[11-16,18-39]")
>>> print ns1.difference(ns2)
node[10,17,40-42]
>>> print ns1 - ns2
node[10,17,40-42]
>>> ns3 = NodeSet("node[1-14,40-200]")
>>> print ns3.intersection(ns1)
node[10-14,40-42]

Unlike Python sets, it is important to notice that NodeSet is
somewhat not so strict about the type of element used for set operations. Thus
when a string object is encountered, it is automatically converted to a
NodeSet object for convenience. The following example shows an example of
this (set operation is working with either a native nodeset or a string):

>>> nodeset = NodeSet("node[1-10]")
>>> nodeset2 = NodeSet("node7")
>>> nodeset.difference_update(nodeset2)
>>> print nodeset
node[1-6,8-10]
>>>
>>> nodeset.difference_update("node8")
>>> print nodeset
node[1-6,9-10]

NodeSet ordered content leads to the following being allowed:

>>> nodeset = NodeSet("node[10-49]")
>>> print nodeset[0]
node10
>>> print nodeset[-1]
node49
>>> print nodeset[10:]
node[20-49]
>>> print nodeset[:5]
node[10-14]
>>> print nodeset[::4]
node[10,14,18,22,26,30,34,38,42,46]

And it works for node names without index, for example:

>>> nodeset = NodeSet("lima,oscar,zulu,alpha,delta,foxtrot,tango,x-ray")
>>> print nodeset
alpha,delta,foxtrot,lima,oscar,tango,x-ray,zulu
>>> print nodeset[0]
alpha
>>> print nodeset[-2]
x-ray

And also for multidimensional node sets:

>>> nodeset = NodeSet("clu1-[1-10]-ib[0-1],clu2-[1-10]-ib[0-1]")
>>> print nodeset
clu[1-2]-[1-10]-ib[0-1]
>>> print nodeset[0]
clu1-1-ib0
>>> print nodeset[-1]
clu2-10-ib1
>>> print nodeset[::2]
clu[1-2]-[1-10]-ib0

To split a NodeSet object into n subsets, use the NodeSet.split()
method, for example:

>>> for nodeset in NodeSet("node[10-49]").split(2):
... print nodeset
...
node[10-29]
node[30-49]

To split a NodeSet object into contiguous subsets, use the
NodeSet.contiguous() method, for example:

>>> for nodeset in NodeSet("node[10-49,51-53,60-64]").contiguous():
... print nodeset
...
node[10-49]
node[51-53]
node[60-64]

For further details, please use the following command to see full
NodeSet API documentation.

Multidimensional considerations

Version 1.7 introduces full support of multidimensional NodeSet (eg.
da[2-5]c[1-2]p[0-1]). The NodeSet interface is the same,
multidimensional patterns are automatically detected by the parser and
processed internally. While expanding a multidimensional NodeSet is easily
solved by performing a cartesian product of all dimensions, folding nodes is
much more complex and time consuming. To reduce the performance impact of such
feature, the NodeSet class still relies on RangeSet when
only one dimension is varying (see RangeSet class). Otherwise, it uses
a new class named RangeSetND for full multidimensional support (see
RangeSetND class).

Extended String Pattern

NodeSet class parsing engine recognizes an extended string
pattern, adding support for union (with special character ”,”), difference
(with special character ”!”), intersection (with special character “&”)
and symmetric difference (with special character “^”) operations. String
patterns are read from left to right, by proceeding any character operators
accordinately. The following example shows how you can use this feature:

>>> print NodeSet("node[10-42],node46!node10")
node[11-42,46]

Node groups

Node groups are very useful and are needed to group similar cluster nodes in
terms of configuration, installed software, available resources, etc. A node
can be a member of more than one node group.

Using node groups

Node groups are prefixed with @ character. Please see
Node group expression rules for more details about node group expression/syntax
rules.

Please also have a look at Node groups configuration to
learn how to configure external node group bingings (sources). Once setup
(please use the nodeset command to check your configuration), the
NodeSet parsing engine automatically resolves node groups. For example:

>>> print NodeSet("@oss")
example[4-5]
>>> print NodeSet("@compute")
example[32-159]
>>> print NodeSet("@compute,@oss")
example[4-5,32-159]

That is, all NodeSet-based applications share the same system-wide node group
configuration (unless explicitly disabled — see
Disabling node group resolution).

When the all group upcall is configured (node groups configuration), you can also use the following NodeSet
constructor:

>>> print NodeSet.fromall()
example[4-6,32-159]

When group upcalls are not properly configured, this constructor will raise a
NodeSetExternalError exception.

Finding node groups

In order to find node groups a specified node set belongs to, you can use the
NodeSet.groups() method. This method is used by nodeset -l
<nodeset> command (see Finding node groups). It returns a Python
dictionary where keys are groups found and values, provided for convenience,
are tuples of the form (group_nodeset, contained_nodeset). For example:

>>> for group, (group_nodes, contained_nodes) in NodeSet("@oss").groups().iteritems():
... print group, group_nodes, contained_nodes
...
@all example[4-6,32-159] example[4-5]
@oss example[4-5] example[4-5]

More usage examples follow:

>>> print NodeSet("example4").groups().keys()
['@all', '@oss']
>>> print NodeSet("@mds").groups().keys()
['@all', '@mds']
>>> print NodeSet("dummy0").groups().keys()
[]

Regrouping node sets

If needed group configuration conditions are met (cf. node groups
configuration), you can use the NodeSet.regroup()
method to reduce node sets using matching groups, whenever possible:

>>> print NodeSet("example[4-6]").regroup()
@mds,@oss

The nodeset command makes use of the NodeSet.regroup() method when
using the -r switch (see Resolving node groups).

Overriding default groups configuration

It is possible to override the libary default groups configuration by changing
the default NodeSet resolver object. Usually, this is done for
testing or special purposes. Here is an example of how to override the
resolver object using NodeSet.set_std_group_resolver() in order to
use another configuration file:

>>> from ClusterShell.NodeSet import NodeSet, set_std_group_resolver
>>> from ClusterShell.NodeUtils import GroupResolverConfig
>>> set_std_group_resolver(GroupResolverConfig("/other/groups.conf"))
>>> print NodeSet("@oss")
other[10-20]

It is possible to restore NodeSet default group resolver by
passing None to the NodeSet.set_std_group_resolver() module function,
for example:

>>> from ClusterShell.NodeSet import set_std_group_resolver
>>> set_std_group_resolver(None)

Disabling node group resolution

If for any reason, you want to disable host groups resolution, you can use the
special resolver value RESOLVER_NOGROUP. In that case, NodeSet
parsing engine will not recognize @ group characters anymore, for
instance:

>>> from ClusterShell.NodeSet import NodeSet, RESOLVER_NOGROUP
>>> print NodeSet("@oss")
example[4-5]
>>> print NodeSet("@oss", resolver=RESOLVER_NOGROUP)
@oss

Any attempts to use a group-based method (like NodeSet.groups() or
NodeSet.regroups()) on such “no group” NodeSet will raise a
NodeSetExternalError exception.

NodeSet object serialization

The NodeSet class supports object serialization through the standard
pickling. Group resolution is done before pickling.

 Copyright 2016, Stephane Thiell.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	clustershell 1.7.2 documentation

 	Programming Guide

Range sets

Cluster node names being typically indexed, common node sets rely heavily on
numerical range sets. The RangeSet module provides two public classes
to deal directly with such range sets, RangeSet and
RangeSetND, presented in the following sections.

RangeSet class

The RangeSet class implements a mutable, ordered set of cluster node
indexes (one dimension) featuring a fast range-based API. This class is used
by the NodeSet class (see NodeSet class). Since version 1.6,
RangeSet really derives from standard Python set class (Python
sets [http://docs.python.org/library/sets.html]), and thus provides methods like RangeSet.union(),
RangeSet.intersection(), RangeSet.difference(),
RangeSet.symmetric_difference() and their in-place versions
RangeSet.update(), RangeSet.intersection_update(),
RangeSet.difference_update() and
RangeSet.symmetric_difference_update().

Since v1.6, padding of ranges (eg. 003-009) can be managed through a public
RangeSet instance variable named padding. It may be changed at any
time. Padding is a simple display feature per RangeSet object, thus current
padding value is not taken into account when computing set operations. Also
since v1.6, RangeSet is itself an iterator over its items as
integers (instead of strings). To iterate over string items as before (with
optional padding), you can now use the RangeSet.striter() method.

RangeSetND class

The RangeSetND class builds a N-dimensional RangeSet mutable object
and provides the common set methods. This class is public and may be used
directly, however we think it is less convenient to manipulate that
NodeSet and does not necessarily provide the same one-dimension
optimization (see Multidimensional considerations). Several constructors are
available, using RangeSet objects, strings or individual multidimensional
tuples, for instance:

>>> from ClusterShell.RangeSet import RangeSet, RangeSetND
>>> r1 = RangeSet("1-5/2")
>>> r2 = RangeSet("10-12")
>>> r3 = RangeSet("0-4/2")
>>> r4 = RangeSet("10-12")
>>> print r1, r2, r3, r4
1,3,5 10-12 0,2,4 10-12
>>> rnd = RangeSetND([[r1, r2], [r3, r4]])
>>> print rnd
0-5; 10-12

>>> print list(rnd)
[(0, 10), (0, 11), (0, 12), (1, 10), (1, 11), (1, 12), (2, 10), (2, 11), (2, 12), (3, 10), (3, 11), (3, 12), (4, 10), (4, 11), (4, 12), (5, 10), (5, 11), (5, 12)]
>>> r1 = RangeSetND([(0, 4), (0, 5), (1, 4), (1, 5)])
>>> len(r1)
4
>>> str(r1)
'0-1; 4-5\n'
>>> r2 = RangeSetND([(1, 4), (1, 5), (1, 6), (2, 5)])
>>> str(r2)
'1; 4-6\n2; 5\n'
>>> r = r1 & r2
>>> str(r)
'1; 4-5\n'
>>> list(r)
[(1, 4), (1, 5)]

 Copyright 2016, Stephane Thiell.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	clustershell 1.7.2 documentation

 	Programming Guide

Task management

Structure of Task

A ClusterShell Task and its underlying Engine class are the fundamental
infrastructure associated with a thread. An Engine implements an event
processing loop that you use to schedule work and coordinate the receipt of
incoming events. The purpose of this run loop is to keep your thread busy when
there is work to do and put your thread to sleep when there is none. When
calling the Task.resume() or Task.run() methods, your thread
enters the Task Engine run loop and calls installed event handlers in response
to incoming events.

Using Task objects

A Task object provides the main interface for adding shell commands, files
to copy or timer and then running it. Every thread has a single Task object
(and underlying Engine object) associated with it. The Task object is an
instance of the Task class.

Getting a Task object

To get the Task object bound to the current thread, you use one of the following:

	Use the Task.task_self() function available at the root of the Task
module

	or use task = Task(); Task objects are only instantiated when needed.

Example of getting the current task object:

>>> from ClusterShell.Task import task_self
>>> task = task_self()

So for a single-threaded application, a Task is a simple singleton (which
instance is also available through Task.task_self()).

To get the Task object associated to a specific thread identified by the
identifier tid, you use the following:

>>> from ClusterShell.Task import Task
>>> task = Task(thread_id=tid)

Configuring the Task object

Each Task provides an info dictionary that shares both internal
Task-specific parameters and user-defined (key, value) parameters. Use the
following Task class methods to get or set parameters:

	Task.info()

	Task.set_info()

For example, to configure the task debugging behavior:

>>> task.set_info('debug', True)
>>> task.info('debug')
True

You can also use the Task info dictionary to set your own Task-specific
key, value pairs. You may use any free keys but only keys starting with
USER_ are guaranteed not to be used by ClusterShell in the future.

Task info keys and their default values:

	Info key string
	Default value
	Comment

	debug
	False
	Enable debugging support (boolean)

	print_debug
	internal using
print
	Default is to print debug lines to
stdout using print. To override
this behavior, set a function that
takes two arguments (the task
object and a string) as the value.

	fanout
	64
	Ssh fanout window (integer)

	connect_timeout
	10
	Value passed to ssh or pdsh
(integer)

	command_timeout
	0 (no timeout)
	Value passed to ssh or pdsh
(integer)

Below is an example of print_debug override. As you can see, we set the
function print_csdebug(task, s) as the value. When debugging is enabled,
this function will be called for any debug text line. For example, this
function searchs for any known patterns and print a modified debug line to
stdout when found:

def print_csdebug(task, s):
 m = re.search("(\w+): SHINE:\d:(\w+):", s)
 if m:
 print "%s<pickle>" % m.group(0)
 else:
 print s

Install the new debug printing function
task_self().set_info("print_debug", print_csdebug)

Submitting a shell command

You can submit a set of commands for local or distant execution in parallel
with Task.shell().

Local usage:

task.shell(command [, key=key] [, handler=handler] [, timeout=secs])

Distant usage:

task.shell(command, nodes=nodeset [, handler=handler] [, timeout=secs])

This method makes use of the default local or distant worker. ClusterShell
uses a default Worker based on the Python Popen2 standard module to execute
local commands, and a Worker based on ssh (Secure SHell) for distant
commands.

If the Task is not running, the command is scheduled for later execution. If
the Task is currently running, the command is executed as soon as possible
(depending on the current fanout).

To set a per-worker (eg. per-command) timeout value, just use the timeout
parameter (in seconds), for example:

task.shell("uname -r", nodes=remote_nodes, handler=ehandler, timeout=5)

This is the prefered way to specify a command timeout.
EventHandler.ev_timeout() event is generated before the worker has finished to
indicate that some nodes have timed out. You may then retrieve the nodes with
DistantWorker.iter_keys_timeout().

Submitting a file copy action

Local file copy to distant nodes is supported. You can submit a copy action
with Task.copy():

task.copy(source, dest, nodes=nodeset [, handler=handler] [, timeout=secs])

This method makes use of the default distant copy worker which is based on scp
(Secure CoPy) which comes with OpenSSH.

If the Task is not running, the copy is scheduled for later execution. If the
Task is currently running, the copy is started as soon as possible (depending
on the current fanout).

Starting the Task

Before you run a Task, you must add at least one worker (shell command, file
copy) or timer to it. If a Task does not have any worker to execute and
monitor, it exits immediately when you try to run it with:

task.resume()

At this time, all previously submitted commands will start in the associated
Task thread. From a library user point of view, the task thread is blocked
until the end of the command executions.

Please note that the special method Task.run() does a
Task.shell() and a Task.resume() in once.

To set a Task execution timeout, use the optional timeout parameter to set
the timeout value in seconds. Once this time is elapsed when the Task is still
running, the running Task raises TimeoutError exception, cleaning by the
way all scheduled workers and timers. Using such a timeout ensures that the
Task will not exceed a given time for all its scheduled works. You can also
configure per-worker timeout that generates an event
EventHandler.ev_timeout() but will not raise an exception, allowing the
Task to continue. Indeed, using a per-worker timeout is the prefered way for
most applications.

Getting Task results

After the task is finished (after Task.resume() or Task.run())
or after a worker is completed when you have previously defined an event
handler (at EventHandler.ev_close()), you can use Task result getters:

	Task.iter_buffers()

	Task.iter_errors()

	Task.node_buffer()

	Task.node_error()

	Task.max_retcode()

	Task.num_timeout()

	Task.iter_keys_timeout()

Note: buffer refers to standard output, error to standard error.

Please see some examples in Programming Examples.

Exiting the Task

If a Task does not have anymore scheduled worker or timer (for example, if you
run one shell command and then it closes), it exits automatically from
Task.resume(). Still, except from a signal handler, you can always call
the following method to abort the Task execution:

	Task.abort()

For example, it is safe to call this method from an event handler within the
task itself. On abort, all scheduled workers (shell command, file copy) and
timers are cleaned and Task.resume() returns, unblocking the Task
thread from a library user point of view. Please note that commands being
executed remotely are not necessary stopped (this is due to ssh(1)
behavior).

Configuring a Timer

A timer is bound to a Task (and its underlying Engine) and fires at a preset
time in the future. Timers can fire either only once or repeatedly at fixed
time intervals. Repeating timers can also have their next firing time manually
adjusted (see Task.timer()).

A timer is not a real-time mechanism; it fires when the Task’s underlying
Engine to which the timer has been added is running and able to check if the
timer firing time has passed.

When a timer fires, the method EventHandler.ev_timer() of the
associated EventHandler is called.

To configure a timer, use the following (secs in seconds with floating point
precision):

task.timer(self, fire=secs, handler=handler [, interval=secs])

Changing default worker

When calling Task.shell() or Task.copy() the Task object creates
a worker instance for each call. When the nodes argument is defined, the
worker class used for these calls is based on Task default distant_worker.
Change this value to use another worker class, by example Rsh:

from ClusterShell.Task import task_self
from ClusterShell.Worker.Rsh import WorkerRsh

task_self().set_default('distant_worker', WorkerRsh)

Thread safety and Task objects

ClusterShell is an event-based library and one of its advantage is to avoid
the use of threads (and their safety issues), so it’s mainly not thread-safe.
When possible, avoid the use of threads with ClusterShell. However, it’s
sometimes not so easy, first because another library you want to use in some
event handler is not event-based and may block the current thread (that’s
enough to break the deal). Also, in some cases, it could be useful for you to
run several Tasks at the same time. Since version 1.1, ClusterShell provides
support for launching a Task in another thread and some experimental support
for multiple Tasks, but:

	you should ensure that a Task is configured and accessed from one thread at
a time before it’s running (there is no API lock/mutex protection),

	once the Task is running, you should modify it only from the same thread
that owns that Task (for example, you cannot call Task.abort() from
another thread).

The library provides two thread-safe methods and a function for basic Task
interactions: Task.wait(), Task.join() and
Task.task_wait() (function defined at the root of the Task module).
Please refer to the API documentation.

Configuring explicit Shell Worker objects

We have seen in Submitting a shell command how to easily submit shell commands to the
Task. The Task.shell() method returns an already scheduled Worker
object. It is possible to instantiate the Worker object explicitly, for
example:

from ClusterShell.Worker.Ssh import WorkerSsh

worker = WorkerSsh('node3', command="/bin/echo alright")

To be used in a Task, add the worker to it with:

task.schedule(worker)

If you have pdsh installed, you can use it by easily switching to the Pdsh
worker, which should behave the same manner as the Ssh worker:

from ClusterShell.Worker.Pdsh import WorkerPdsh

worker = WorkerPdsh('node3', command="/bin/echo alright")

 Copyright 2016, Stephane Thiell.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	clustershell 1.7.2 documentation

 	Programming Guide

Programming Examples

Remote command example (sequential mode)

The following example shows how to send a command on some nodes, how to get a
specific buffer and how to get gathered buffers:

from ClusterShell.Task import task_self
task = task_self()

task.run("/bin/uname -r", nodes="green[36-39,133]")

print task.node_buffer("green37")

for buf, nodes in task.iter_buffers():
 print nodes, buf

if task.max_retcode() != 0:
 print "An error occurred (max rc = %s)" % task.max_retcode()

Result:

2.6.32-431.el6.x86_64
['green37', 'green38', 'green36', 'green39'] 2.6.32-431.el6.x86_64
['green133'] 3.10.0-123.20.1.el7.x86_64
Max return code is 0

Remote command example with live output (event-based mode)

The following example shows how to use the event-based programmation model by
installing an EventHandler and listening for EventHandler.ev_read()
(we’ve got a line to read) and EventHandler.ev_hup() (one command has
just completed) events. The goal here is to print standard outputs of uname
-a commands during their execution and also to notify the user of any
erroneous return codes:

from ClusterShell.Task import task_self
from ClusterShell.Event import EventHandler

class MyHandler(EventHandler):

 def ev_read(self, worker):
 print "%s: %s" % (worker.current_node, worker.current_msg)

 def ev_hup(self, worker):
 if worker.current_rc != 0:
 print "%s: returned with error code %s" % (
 worker.current_node, worker.current_rc)

task = task_self()

Submit command, install event handler for this command and run task
task.run("/bin/uname -a", nodes="fortoy[32-159]", handler=MyHandler())

check_nodes.py example script

The following script is available as an example in the source repository and
is usually packaged with ClusterShell:

#!/usr/bin/python
check_nodes.py: ClusterShell simple example script.
#
This script runs a simple command on remote nodes and report node
availability (basic health check) and also min/max boot dates.
It shows an example of use of Task, NodeSet and EventHandler objects.
Feel free to copy and modify it to fit your needs.
#
Usage example: ./check_nodes.py -n node[1-99]

import optparse
from datetime import date, datetime
import time

from ClusterShell.Event import EventHandler
from ClusterShell.NodeSet import NodeSet
from ClusterShell.Task import task_self

class CheckNodesResult:
 """Our result class"""
 def __init__(self):
 """Initialize result class"""
 self.nodes_ok = NodeSet()
 self.nodes_ko = NodeSet()
 self.min_boot_date = None
 self.max_boot_date = None

 def show(self):
 """Display results"""
 if self.nodes_ok:
 print "%s: OK (boot date: min %s, max %s)" % \
 (self.nodes_ok, self.min_boot_date, self.max_boot_date)
 if self.nodes_ko:
 print "%s: FAILED" % self.nodes_ko

class CheckNodesHandler(EventHandler):
 """Our ClusterShell EventHandler"""

 def __init__(self, result):
 """Initialize our event handler with a ref to our result object."""
 EventHandler.__init__(self)
 self.result = result

 def ev_read(self, worker):
 """Read event from remote nodes"""
 node = worker.current_node
 # this is an example to demonstrate remote result parsing
 bootime = " ".join(worker.current_msg.strip().split()[2:])
 date_boot = None
 for fmt in ("%Y-%m-%d %H:%M",): # formats with year
 try:
 # datetime.strptime() is Python2.5+, use old method instead
 date_boot = datetime(*(time.strptime(bootime, fmt)[0:6]))
 except ValueError:
 pass
 for fmt in ("%b %d %H:%M",): # formats without year
 try:
 date_boot = datetime(date.today().year, \
 *(time.strptime(bootime, fmt)[1:6]))
 except ValueError:
 pass
 if date_boot:
 if not self.result.min_boot_date or \
 self.result.min_boot_date > date_boot:
 self.result.min_boot_date = date_boot
 if not self.result.max_boot_date or \
 self.result.max_boot_date < date_boot:
 self.result.max_boot_date = date_boot
 self.result.nodes_ok.add(node)
 else:
 self.result.nodes_ko.add(node)

 def ev_timeout(self, worker):
 """Timeout occurred on some nodes"""
 self.result.nodes_ko.add(\
 NodeSet.fromlist(worker.iter_keys_timeout()))

 def ev_close(self, worker):
 """Worker has finished (command done on all nodes)"""
 self.result.show()

def main():
 """ Main script function """
 # Initialize option parser
 parser = optparse.OptionParser()
 parser.add_option("-d", "--debug", action="store_true", dest="debug",
 default=False, help="Enable debug mode")
 parser.add_option("-n", "--nodes", action="store", dest="nodes",
 default="@all", help="Target nodes (default @all group)")
 parser.add_option("-f", "--fanout", action="store", dest="fanout",
 default="128", help="Fanout window size (default 128)", type=int)
 parser.add_option("-t", "--timeout", action="store", dest="timeout",
 default="5", help="Timeout in seconds (default 5)", type=float)
 options, _ = parser.parse_args()

 # Get current task (associated to main thread)
 task = task_self()
 nodes_target = NodeSet(options.nodes)
 task.set_info("fanout", options.fanout)
 if options.debug:
 print "nodeset : %s" % nodes_target
 task.set_info("debug", True)

 # Create ClusterShell event handler
 handler = CheckNodesHandler(CheckNodesResult())

 # Schedule remote command and run task (blocking call)
 task.run("who -b", nodes=nodes_target, handler=handler, \
 timeout=options.timeout)

if __name__ == '__main__':
 main()

Using NodeSet with Parallel Python Batch script using SLURM

The following example shows how to use the NodeSet class to expand
$SLURM_NODELIST environment variable in a Parallel Python batch script
launched by SLURM. This variable may contain folded node sets. If ClusterShell
is not available system-wide on your compute cluster, you need to follow
Installing ClusterShell as user using PIP first.

Example of SLURM pp.sbatch to submit using sbatch pp.sbatch:

#!/bin/bash

#SBATCH -N 2
#SBATCH --ntasks-per-node 1

run the servers
srun ~/.local/bin/ppserver.py -w $SLURM_CPUS_PER_TASK -t 300 &
sleep 10

launch the parallel processing
python -u ./pp_jobs.py

Example of a pp_jobs.py script:

#!/usr/bin/env python

import os, time
import pp
from ClusterShell.NodeSet import NodeSet

get the nodelist form Slurm
nodeset = NodeSet(os.environ['SLURM_NODELIST'])

start the servers (ncpus=0 will make sure that none is started locally)
casting nodelist to tuple/list will correctly expand $SLURM_NODELIST
job_server = pp.Server(ncpus=0, ppservers=tuple(nodelist))

make sure the servers have enough time to start
time.sleep(5)

test function to execute on the remove nodes
def test_func():
 print os.uname()

start the jobs
job_1 = job_server.submit(test_func,(),(),("os",))
job_2 = job_server.submit(test_func,(),(),("os",))

retrive the results
print job_1()
print job_2()

Cleanup
job_server.print_stats()
job_server.destroy()

 Copyright 2016, Stephane Thiell.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	clustershell 1.7.2 documentation

Python API

ClusterShell public API autodoc.

	NodeSet
	Usage example

	NodeUtils

	RangeSet

	RangeSetND

	MsgTree

	Task

	Defaults

	Event

	EngineTimer

	Workers
	Worker

	ExecWorker

	StreamWorker

	WorkerRsh

	WorkerPdsh

	WorkerPopen

	WorkerSsh

 Copyright 2016, Stephane Thiell.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	clustershell 1.7.2 documentation

 	Python API

NodeSet

Cluster node set module.

A module to efficiently deal with node sets and node groups.
Instances of NodeSet provide similar operations than the builtin set() type,
see http://www.python.org/doc/lib/set-objects.html

Usage example

>>> # Import NodeSet class
... from ClusterShell.NodeSet import NodeSet
>>>
>>> # Create a new nodeset from string
... nodeset = NodeSet("cluster[1-30]")
>>> # Add cluster32 to nodeset
... nodeset.update("cluster32")
>>> # Remove from nodeset
... nodeset.difference_update("cluster[2-5,8-31]")
>>> # Print nodeset as a pdsh-like pattern
... print nodeset
cluster[1,6-7,32]
>>> # Iterate over node names in nodeset
... for node in nodeset:
... print node
cluster1
cluster6
cluster7
cluster32

	
class ClusterShell.NodeSet.NodeSet(nodes=None, autostep=None, resolver=None, fold_axis=None)

	Iterable class of nodes with node ranges support.

NodeSet creation examples:

>>> nodeset = NodeSet() # empty NodeSet
>>> nodeset = NodeSet("cluster3") # contains only cluster3
>>> nodeset = NodeSet("cluster[5,10-42]")
>>> nodeset = NodeSet("cluster[0-10/2]")
>>> nodeset = NodeSet("cluster[0-10/2],othername[7-9,120-300]")

NodeSet provides methods like update(), intersection_update() or
difference_update() methods, which conform to the Python Set API.
However, unlike RangeSet or standard Set, NodeSet is somewhat not
so strict for convenience, and understands NodeSet instance or
NodeSet string as argument. Also, there is no strict definition of
one element, for example, it IS allowed to do:

>>> nodeset = NodeSet("blue[1-50]")
>>> nodeset.remove("blue[36-40]")
>>> print nodeset
blue[1-35,41-50]

Additionally, the NodeSet class recognizes the “extended string
pattern” which adds support for union (special character ”,”),
difference (”!”), intersection (“&”) and symmetric difference (“^”)
operations. String patterns are read from left to right, by
proceeding any character operators accordinately.

Extended string pattern usage examples:

>>> nodeset = NodeSet("node[0-10],node[14-16]") # union
>>> nodeset = NodeSet("node[0-10]!node[8-10]") # difference
>>> nodeset = NodeSet("node[0-10]&node[5-13]") # intersection
>>> nodeset = NodeSet("node[0-10]^node[5-13]") # xor

	
__and__(other)

	Implements the & operator. So s & t returns a new nodeset with
elements common to s and t.

	
__contains__(other)

	Is node contained in NodeSet ?

	
__copy__()

	Return a shallow copy of a NodeSet.

	
__delattr__

	x.__delattr__(‘name’) <==> del x.name

	
__eq__(other)

	NodeSet equality comparison.

	
__format__()

	default object formatter

	
__ge__(other)

	Report whether this nodeset contains another nodeset.

	
__getattribute__

	x.__getattribute__(‘name’) <==> x.name

	
__getitem__(index)

	Return the node at specified index or a subnodeset when a slice
is specified.

	
__getstate__()

	Called when pickling: remove references to group resolver.

	
__gt__(other)

	x.__gt__(y) <==> x>y

	
__hash__

	

	
__iand__(other)

	Implements the &= operator. So s &= t returns nodeset s keeping
only elements also found in t. (Python version 2.5+ required)

	
__init__(nodes=None, autostep=None, resolver=None, fold_axis=None)

	Initialize a NodeSet object.

The nodes argument may be a valid nodeset string or a NodeSet
object. If no nodes are specified, an empty NodeSet is created.

The optional autostep argument is passed to underlying
RangeSet.RangeSet objects and aims to enable and make use of
the range/step syntax (eg. node[1-9/2]) when converting NodeSet to
string (using folding). To enable this feature, autostep must be set
there to the min number of indexes that are found at equal distance of
each other inside a range before NodeSet starts to use this syntax. For
example, autostep=3 (or less) will pack n[2,4,6] into
n[2-6/2]. Default autostep value is None which means “inherit
whenever possible”, ie. do not enable it unless set in NodeSet objects
passed as nodes here or during arithmetic operations.
You may however use the special AUTOSTEP_DISABLED constant to force
turning off autostep feature.

The optional resolver argument may be used to override the group
resolving behavior for this NodeSet object. It can either be set to a
NodeUtils.GroupResolver object, to the RESOLVER_NOGROUP
constant to disable any group resolution, or to None (default) to use
standard NodeSet group resolver (see set_std_group_resolver()
at the module level to change it if needed).

nD nodeset only: the optional fold_axis parameter, if specified, set
the public instance member fold_axis to an iterable over nD 0-indexed
axis integers. This parameter may be used to disengage some nD folding.
That may be useful as all cluster tools don’t support folded-nD nodeset
syntax. Pass [0], for example, to only fold along first axis (that
is, to fold first dimension using [a-b] rangeset syntax whenever
possible). Using fold_axis ensures that rangeset won’t be folded on
unspecified axis, but please note however, that using fold_axis may
lead to suboptimial folding, this is because NodeSet algorithms are
optimized for folding along all axis (default behavior).

	
__ior__(other)

	Implements the |= operator. So s |= t returns nodeset s with
elements added from t. (Python version 2.5+ required)

	
__isub__(other)

	Implement the -= operator. So s -= t returns nodeset s after
removing elements found in t. (Python version 2.5+ required)

	
__iter__()

	Iterator on single nodes as string.

	
__ixor__(other)

	Implement the ^= operator. So s ^= t returns nodeset s after
keeping all nodes that are in exactly one of the nodesets.
(Python version 2.5+ required)

	
__le__(other)

	Report whether another nodeset contains this nodeset.

	
__len__()

	Get the number of nodes in NodeSet.

	
__lt__(other)

	x.__lt__(y) <==> x<y

	
__new__(S, ...) a new object with type S, a subtype of T

	

	
__or__(other)

	Implements the | operator. So s | t returns a new nodeset with
elements from both s and t.

	
__reduce__()

	helper for pickle

	
__reduce_ex__()

	helper for pickle

	
__repr__

	

	
__setattr__

	x.__setattr__(‘name’, value) <==> x.name = value

	
__setstate__(dic)

	Called when unpickling: restore parser using non group
resolver.

	
__sizeof__() int

	size of object in memory, in bytes

	
__str__()

	Get ranges-based pattern of node list.

	
__sub__(other)

	Implement the - operator. So s - t returns a new nodeset with
elements in s but not in t.

	
__subclasshook__()

	Abstract classes can override this to customize issubclass().

This is invoked early on by abc.ABCMeta.__subclasscheck__().
It should return True, False or NotImplemented. If it returns
NotImplemented, the normal algorithm is used. Otherwise, it
overrides the normal algorithm (and the outcome is cached).

	
__weakref__

	list of weak references to the object (if defined)

	
__xor__(other)

	Implement the ^ operator. So s ^ t returns a new NodeSet with
nodes that are in exactly one of the nodesets.

	
add(other)

	Add node to NodeSet.

	
autostep

	Get autostep value (property)

	
clear()

	Remove all nodes from this nodeset.

	
contiguous()

	Object-based NodeSet iterator on contiguous node sets.

Contiguous node set contains nodes with same pattern name and a
contiguous range of indexes, like foobar[1-100].

	
copy()

	Return a shallow copy of a NodeSet.

	
difference(other)

	s.difference(t) returns a new NodeSet with elements in s but not
in t.

	
difference_update(other, strict=False)

	s.difference_update(t) returns nodeset s after removing
elements found in t. If strict is True, raise KeyError
if an element cannot be removed.

	
classmethod fromall(groupsource=None, autostep=None, resolver=None)

	Class method that returns a new NodeSet with all nodes from optional
groupsource.

	
classmethod fromlist(nodelist, autostep=None, resolver=None)

	Class method that returns a new NodeSet with nodes from provided
list.

	
get_autostep()

	Get autostep value (property)

	
groups(groupsource=None, noprefix=False)

	Find node groups this nodeset belongs to.

	Return a dictionary of the form:

	group_name => (group_nodeset, contained_nodeset)

Group names are always prefixed with “@”. If groupsource is provided,
they are prefixed with “@groupsource:”, unless noprefix is True.

	
intersection(other)

	s.intersection(t) returns a new set with elements common to s
and t.

	
intersection_update(other)

	s.intersection_update(t) returns nodeset s keeping only
elements also found in t.

	
issubset(other)

	Report whether another nodeset contains this nodeset.

	
issuperset(other)

	Report whether this nodeset contains another nodeset.

	
nsiter()

	Object-based NodeSet iterator on single nodes.

	
regroup(groupsource=None, autostep=None, overlap=False, noprefix=False)

	Regroup nodeset using node groups.

Try to find fully matching node groups (within specified groupsource)
and return a string that represents this node set (containing these
potential node groups). When no matching node groups are found, this
method returns the same result as str().

	
remove(elem)

	Remove element elem from the nodeset. Raise KeyError if elem
is not contained in the nodeset.

	Raises:	KeyError – elem is not contained in the nodeset

	
set_autostep(val)

	Set autostep value (property)

	
split(nbr)

	Split the nodeset into nbr sub-nodesets (at most). Each
sub-nodeset will have the same number of elements more or
less 1. Current nodeset remains unmodified.

>>> for nodeset in NodeSet("foo[1-5]").split(3):
... print nodeset
foo[1-2]
foo[3-4]
foo5

	
striter()

	Iterator on single nodes as string.

	
symmetric_difference(other)

	s.symmetric_difference(t) returns the symmetric difference of
two nodesets as a new NodeSet.

(ie. all nodes that are in exactly one of the nodesets.)

	
symmetric_difference_update(other)

	s.symmetric_difference_update(t) returns nodeset s keeping all
nodes that are in exactly one of the nodesets.

	
union(other)

	s.union(t) returns a new set with elements from both s and t.

	
update(other)

	s.update(t) returns nodeset s with elements added from t.

	
updaten(others)

	s.updaten(list) returns nodeset s with elements added from given list.

	
ClusterShell.NodeSet.expand(pat)

	Commodity function that expands a nodeset pattern into a list of nodes.

	
ClusterShell.NodeSet.fold(pat)

	Commodity function that clean dups and fold provided pattern with ranges
and “/step” support.

	
ClusterShell.NodeSet.grouplist(namespace=None, resolver=None)

	Commodity function that retrieves the list of raw groups for a specified
group namespace (or use default namespace).
Group names are not prefixed with “@”.

	
ClusterShell.NodeSet.std_group_resolver()

	Get the current resolver used for standard “@” group resolution.

	
ClusterShell.NodeSet.set_std_group_resolver(new_resolver)

	Override the resolver used for standard “@” group resolution. The
new resolver should be either an instance of
NodeUtils.GroupResolver or None. In the latter case, the group
resolver is restored to the default one.

 Copyright 2016, Stephane Thiell.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	clustershell 1.7.2 documentation

 	Python API

NodeUtils

Cluster nodes utility module

The NodeUtils module is a ClusterShell helper module that provides
supplementary services to manage nodes in a cluster. It is primarily
designed to enhance the NodeSet module providing some binding support
to external node groups sources in separate namespaces (example of
group sources are: files, jobs scheduler, custom scripts, etc.).

	
class ClusterShell.NodeUtils.GroupSource(name, groups=None, allgroups=None)

	ClusterShell Group Source class.

A Group Source object defines resolv_map, resolv_list, resolv_all and
optional resolv_reverse methods for node group resolution. It is
constituting a group resolution namespace.

	
__init__(name, groups=None, allgroups=None)

	Initialize GroupSource

	Parameters:	
	name – group source name

	groups – group to nodes dict

	allgroups – optional _all groups_ result (string)

	
__weakref__

	list of weak references to the object (if defined)

	
resolv_all()

	Return the content of all groups as defined by this GroupSource

	
resolv_list()

	Return a list of all group names for this group source

	
resolv_map(group)

	Get nodes from group group

	
resolv_reverse(node)

	Return the group name matching the provided node.

	
class ClusterShell.NodeUtils.GroupResolver(default_source=None, illegal_chars=None)

	Base class GroupResolver that aims to provide node/group resolution
from multiple GroupSources.

A GroupResolver object might be initialized with a default
GroupSource object, that is later used when group resolution is
requested with no source information. As of version 1.7, a set of
illegal group characters may also be provided for sanity check
(raising GroupResolverIllegalCharError when found).

	
__init__(default_source=None, illegal_chars=None)

	Initialize GroupResolver object.

	
__weakref__

	list of weak references to the object (if defined)

	
add_source(group_source)

	Add a GroupSource to this resolver.

	
all_nodes(namespace=None)

	Find all nodes. You may specify an optional namespace.

	
default_source_name

	Get default source name of resolver.

	
group_nodes(group, namespace=None)

	Find nodes for specified group name and optional namespace.

	
grouplist(namespace=None)

	Get full group list. You may specify an optional
namespace.

	
has_node_groups(namespace=None)

	Return whether finding group list for a specified node is
supported by the resolver (in optional namespace).

	
node_groups(node, namespace=None)

	Find group list for specified node and optional namespace.

	
set_verbosity(value)

	Set debugging verbosity value (DEPRECATED: use logging.DEBUG).

	
sources()

	Get the list of all resolver source names.

	
class ClusterShell.NodeUtils.GroupResolverConfig(filenames, illegal_chars=None)

	GroupResolver class that is able to automatically setup its
GroupSource’s from a configuration file. This is the default
resolver for NodeSet.

	
__init__(filenames, illegal_chars=None)

	Initialize GroupResolverConfig from filenames. Only the first
accessible config filename is loaded.

 Copyright 2016, Stephane Thiell.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	clustershell 1.7.2 documentation

 	Python API

RangeSet

Cluster range set module.

Instances of RangeSet provide similar operations than the builtin set type,
extended to support cluster ranges-like format and stepping support (“0-8/2”).

	
class ClusterShell.RangeSet.RangeSet(pattern=None, autostep=None)

	Mutable set of cluster node indexes featuring a fast range-based API.

This class aims to ease the management of potentially large cluster range
sets and is used by the NodeSet class.

RangeSet basic constructors:

>>> rset = RangeSet() # empty RangeSet
>>> rset = RangeSet("5,10-42") # contains 5, 10 to 42
>>> rset = RangeSet("0-10/2") # contains 0, 2, 4, 6, 8, 10

Also any iterable of integers can be specified as first argument:

>>> RangeSet([3, 6, 8, 7, 1])
1,3,6-8
>>> rset2 = RangeSet(rset)

Padding of ranges (eg. “003-009”) can be managed through a public RangeSet
instance variable named padding. It may be changed at any time. Padding is
a simple display feature per RangeSet object, thus current padding value is
not taken into account when computing set operations.
RangeSet is itself an iterator over its items as integers (instead of
strings). To iterate over string items with optional padding, you can use
the RangeSet.striter(): method.

RangeSet provides methods like RangeSet.union(),
RangeSet.intersection(), RangeSet.difference(),
RangeSet.symmetric_difference() and their in-place versions
RangeSet.update(), RangeSet.intersection_update(),
RangeSet.difference_update(),
RangeSet.symmetric_difference_update() which conform to the Python
Set API.

	
__and__(other)

	Return the intersection of two RangeSets as a new RangeSet.

(I.e. all elements that are in both sets.)

	
__contains__(element)

	Report whether an element is a member of a RangeSet.
Element can be either another RangeSet object, a string or an
integer.

Called in response to the expression element in self.

	
__copy__()

	Return a shallow copy of a RangeSet.

	
__eq__(other)

	RangeSet equality comparison.

	
__ge__(other)

	Report whether this RangeSet contains another set.

	
__getitem__(index)

	Return the element at index or a subrange when a slice is specified.

	
__iand__(other)

	Update a RangeSet with the intersection of itself and another.

	
__init__(pattern=None, autostep=None)

	Initialize RangeSet object.

	Parameters:	
	pattern – optional string pattern

	autostep – optional autostep threshold

	
__ior__(other)

	Update a RangeSet with the union of itself and another.

	
__isub__(other)

	Remove all elements of another set from this RangeSet.

	
__iter__()

	Iterate over each element in RangeSet.

	
__ixor__(other)

	Update a RangeSet with the symmetric difference of itself and
another.

	
__le__(other)

	Report whether another set contains this RangeSet.

	
static __new__(pattern=None, autostep=None)

	Object constructor

	
__or__(other)

	Return the union of two RangeSets as a new RangeSet.

(I.e. all elements that are in either set.)

	
__reduce__()

	Return state information for pickling.

	
__repr__()

	Get comma-separated range-based string (x-y/step format).

	
__setstate__(dic)

	called upon unpickling

	
__str__()

	Get comma-separated range-based string (x-y/step format).

	
__sub__(other)

	Return the difference of two RangeSets as a new RangeSet.

(I.e. all elements that are in this set and not in the other.)

	
__xor__(other)

	Return the symmetric difference of two RangeSets as a new RangeSet.

(I.e. all elements that are in exactly one of the sets.)

	
add(element, pad=0)

	Add an element to a RangeSet.
This has no effect if the element is already present.

	
add_range(start, stop, step=1, pad=0)

	Add a range (start, stop, step and padding length) to RangeSet.
Like the Python built-in function range(), the last element
is the largest start + i * step less than stop.

	
autostep

	autostep threshold public instance attribute

	
clear()

	Remove all elements from this RangeSet.

	
contiguous()

	Object-based iterator over contiguous range sets.

	
copy()

	Return a shallow copy of a RangeSet.

	
difference(other)

	Return the difference of two RangeSets as a new RangeSet.

(I.e. all elements that are in this set and not in the other.)

	
difference_update(other, strict=False)

	Remove all elements of another set from this RangeSet.

If strict is True, raise KeyError if an element cannot be removed.
(strict is a RangeSet addition)

	
dim()

	Get the number of dimensions of this RangeSet object. Common
method with RangeSetND. Here, it will always return 1 unless
the object is empty, in that case it will return 0.

	
discard(element)

	Remove element from the RangeSet if it is a member.

If the element is not a member, do nothing.

	
classmethod fromlist(rnglist, autostep=None)

	Class method that returns a new RangeSet with ranges from provided
list.

	
classmethod fromone(index, pad=0, autostep=None)

	Class method that returns a new RangeSet of one single item or
a single range (from integer or slice object).

	
get_autostep()

	Get autostep value (property)

	
intersection(other)

	Return the intersection of two RangeSets as a new RangeSet.

(I.e. all elements that are in both sets.)

	
intersection_update(other)

	Update a RangeSet with the intersection of itself and another.

	
issubset(other)

	Report whether another set contains this RangeSet.

	
issuperset(other)

	Report whether this RangeSet contains another set.

	
remove(element)

	Remove an element from a RangeSet; it must be a member.

	Parameters:	element – the element to remove

	Raises:	
	KeyError – element is not contained in RangeSet

	ValueError – element is not castable to integer

	
set_autostep(val)

	Set autostep value (property)

	
slices()

	Iterate over RangeSet ranges as Python slice objects.

	
split(nbr)

	Split the rangeset into nbr sub-rangesets (at most). Each
sub-rangeset will have the same number of elements more or
less 1. Current rangeset remains unmodified. Returns an
iterator.

>>> RangeSet("1-5").split(3)
RangeSet("1-2")
RangeSet("3-4")
RangeSet("foo5")

	
striter()

	Iterate over each (optionally padded) string element in RangeSet.

	
symmetric_difference(other)

	Return the symmetric difference of two RangeSets as a new RangeSet.

(ie. all elements that are in exactly one of the sets.)

	
symmetric_difference_update(other)

	Update a RangeSet with the symmetric difference of itself and
another.

	
union(other)

	Return the union of two RangeSets as a new RangeSet.

(I.e. all elements that are in either set.)

	
union_update(other)

	Update a RangeSet with the union of itself and another.

	
update(iterable)

	Add all integers from an iterable (such as a list).

	
updaten(rangesets)

	Update a rangeset with the union of itself and several others.

RangeSetND

	
class ClusterShell.RangeSet.RangeSetND(args=None, pads=None, autostep=None, copy_rangeset=True)

	Build a N-dimensional RangeSet object.

Warning

You don’t usually need to use this class directly, use
NodeSet instead that has ND support.

Empty constructor:

RangeSetND()

Build from a list of list of RangeSet objects:

RangeSetND([[rs1, rs2, rs3, ...], ...])

Strings are also supported:

RangeSetND([["0-3", "4-10", ...], ...])

Integers are also supported:

RangeSetND([(0, 4), (0, 5), (1, 4), (1, 5), ...]

	
__and__(other)

	Implements the & operator. So s & t returns a new object
with elements common to s and t.

	
__contains__(*args, **kwargs)

	Report whether an element is a member of a RangeSetND.
Element can be either another RangeSetND object, a string or
an integer.

Called in response to the expression element in self.

	
__copy__(*args, **kwargs)

	Return a new, mutable shallow copy of a RangeSetND.

	
__eq__(other)

	RangeSetND equality comparison.

	
__ge__(*args, **kwargs)

	Report whether this RangeSetND contains another RangeSetND.

	
__getitem__(*args, **kwargs)

	Return the element at index or a subrange when a slice is specified.

	
__iand__(other)

	Implements the &= operator. So s &= t returns object s
keeping only elements also found in t (Python 2.5+ required).

	
__init__(args=None, pads=None, autostep=None, copy_rangeset=True)

	RangeSetND initializer

All parameters are optional.

	Parameters:	
	args – generic “list of list” input argument (default is None)

	pads – list of 0-padding length (default is to not pad any
dimensions)

	autostep – autostep threshold (use range/step notation if more
than #autostep items meet the condition) - default is
off (None)

	copy_rangeset – (advanced) if set to False, do not copy RangeSet
objects from args (transfer ownership), which is
faster. In that case, you should not modify these
objects afterwards (default is True).

	
__ior__(other)

	Update a RangeSetND with the union of itself and another.

	
__isub__(other)

	Remove all elements of another set from this RangeSetND.

	
__ixor__(other)

	Implement the ^= operator. So s ^= t returns object s after
keeping all items that are in exactly one of the RangeSetND
(Python 2.5+ required).

	
__le__(other)

	Report whether another set contains this RangeSetND.

	
__len__()

	Count unique elements in N-dimensional rangeset.

	
__or__(other)

	Return the union of two RangeSetNDs as a new RangeSetND.

(I.e. all elements that are in either set.)

	
__str__(*args, **kwargs)

	String representation of N-dimensional RangeSet.

	
__sub__(other)

	Return the difference of two RangeSetNDs as a new RangeSetND.

(I.e. all elements that are in this set and not in the other.)

	
__weakref__

	list of weak references to the object (if defined)

	
__xor__(other)

	Implement the ^ operator. So s ^ t returns a new RangeSetND
with nodes that are in exactly one of the RangeSetND.

	
autostep

	autostep threshold public instance attribute

	
contiguous(*args, **kwargs)

	Object-based iterator over contiguous range sets.

	
copy(*args, **kwargs)

	Return a new, mutable shallow copy of a RangeSetND.

	
difference(other)

	s.difference(t) returns a new object with elements in s
but not in t.

	
difference_update(other, strict=False)

	Remove all elements of another set from this RangeSetND.

If strict is True, raise KeyError if an element cannot be removed
(strict is a RangeSet addition)

	
dim()

	Get the current number of dimensions of this RangeSetND
object. Return 0 when object is empty.

	
fold(*args, **kwargs)

	Explicit folding call. Please note that folding of RangeSetND
nD vectors are automatically managed, so you should not have to
call this method. It may be still useful in some extreme cases
where the RangeSetND is heavily modified.

	
get_autostep()

	Get autostep value (property)

	
intersection(other)

	s.intersection(t) returns a new object with elements common
to s and t.

	
intersection_update(other)

	s.intersection_update(t) returns nodeset s keeping only
elements also found in t.

	
issubset(other)

	Report whether another set contains this RangeSetND.

	
issuperset(*args, **kwargs)

	Report whether this RangeSetND contains another RangeSetND.

	
iter_padding(*args, **kwargs)

	Iterate through individual items as tuples with padding info.

	
pads()

	Get a tuple of padding length info for each dimension.

	
class precond_fold

	Decorator to ease internal folding management

	
__weakref__

	list of weak references to the object (if defined)

	
RangeSetND.set_autostep(val)

	Set autostep value (property)

	
RangeSetND.symmetric_difference(other)

	s.symmetric_difference(t) returns the symmetric difference
of two objects as a new RangeSetND.

(ie. all items that are in exactly one of the RangeSetND.)

	
RangeSetND.symmetric_difference_update(other)

	s.symmetric_difference_update(t) returns RangeSetND s
keeping all nodes that are in exactly one of the objects.

	
RangeSetND.union(other)

	Return the union of two RangeSetNDs as a new RangeSetND.

(I.e. all elements that are in either set.)

	
RangeSetND.union_update(other)

	Add all RangeSetND elements to this RangeSetND.

	
RangeSetND.update(other)

	Add all RangeSetND elements to this RangeSetND.

	
RangeSetND.veclist

	Get folded veclist

	
RangeSetND.vectors()

	Get underlying RangeSet vectors

 Copyright 2016, Stephane Thiell.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	clustershell 1.7.2 documentation

 	Python API

MsgTree

MsgTree

ClusterShell message tree module. The purpose of MsgTree is to provide a
shared message tree for storing message lines received from ClusterShell
Workers (for example, from remote cluster commands). It should be
efficient, in term of algorithm and memory consumption, especially when
remote messages are the same.

	
class ClusterShell.MsgTree.MsgTree(mode=0)

	MsgTree maps key objects to multi-lines messages.

MsgTree is a mutable object. Keys are almost arbitrary values (must
be hashable). Message lines are organized as a tree internally.
MsgTree provides low memory consumption especially on a cluster when
all nodes return similar messages. Also, the gathering of messages is
done automatically.

	
__getitem__(key)

	Return the message of MsgTree with specified key. Raises a
KeyError if key is not in the MsgTree.

	
__init__(mode=0)

	MsgTree initializer

The `mode’ parameter should be set to one of the following constant:

MODE_DEFER: all messages are processed immediately, saving memory from
duplicate message lines, but keys are associated to tree elements
usually later when tree is first “walked”, saving useless state
updates and CPU time. Once the tree is “walked” for the first time, its
mode changes to MODE_SHIFT to keep track of further tree updates.
This is the default mode.

MODE_SHIFT: all keys and messages are processed immediately, it is more
CPU time consuming as MsgTree full state is updated at each add() call.

MODE_TRACE: all keys and messages and processed immediately, and keys
are kept for each message element of the tree. The special method
walk_trace() is then available to walk all elements of the tree.

	
__iter__()

	Return an iterator over MsgTree’s keys.

	
__len__()

	Return the number of keys contained in the MsgTree.

	
__weakref__

	list of weak references to the object (if defined)

	
add(key, msgline)

	Add a message line associated with the given key to the MsgTree.

	
clear()

	Remove all items from the MsgTree.

	
get(key, default=None)

	Return the message for key if key is in the MsgTree, else default.
If default is not given, it defaults to None, so that this method
never raises a KeyError.

	
items(match=None, mapper=None)

	Return (key, message) for each key of the MsgTree.

	
keys()

	Return an iterator over MsgTree’s keys.

	
messages(match=None)

	Return an iterator over MsgTree’s messages.

	
remove(match=None)

	Modify the tree by removing any matching key references from the
messages tree.

	Example of use:

	>>> msgtree.remove(lambda k: k > 3)

	
walk(match=None, mapper=None)

	Walk the tree. Optionally filter keys on match parameter,
and optionally map resulting keys with mapper function.
Return an iterator over (message, keys) tuples for each
different message in the tree.

	
walk_trace(match=None, mapper=None)

	Walk the tree in trace mode. Optionally filter keys on match
parameter, and optionally map resulting keys with mapper
function.
Return an iterator over 4-length tuples (msgline, keys, depth,
num_children).

 Copyright 2016, Stephane Thiell.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	clustershell 1.7.2 documentation

 	Python API

Task

ClusterShell Task module.

Simple example of use:

>>> from ClusterShell.Task import task_self, NodeSet
>>>
>>> # get task associated with calling thread
... task = task_self()
>>>
>>> # add a command to execute on distant nodes
... task.shell("/bin/uname -r", nodes="tiger[1-30,35]")
<ClusterShell.Worker.Ssh.WorkerSsh object at 0x7f41da71b890>
>>>
>>> # run task in calling thread
... task.run()
>>>
>>> # get results
... for output, nodelist in task.iter_buffers():
... print '%s: %s' % (NodeSet.fromlist(nodelist), output)
...

	
class ClusterShell.Task.Task(thread=None, defaults=None)

	The Task class defines an essential ClusterShell object which aims to
execute commands in parallel and easily get their results.

More precisely, a Task object manages a coordinated (ie. with respect of
its current parameters) collection of independent parallel Worker objects.
See ClusterShell.Worker.Worker for further details on ClusterShell Workers.

Always bound to a specific thread, a Task object acts like a “thread
singleton”. So most of the time, and even more for single-threaded
applications, you can get the current task object with the following
top-level Task module function:

>>> task = task_self()

However, if you want to create a task in a new thread, use:

>>> task = Task()

To create or get the instance of the task associated with the thread
object thr (threading.Thread):

>>> task = Task(thread=thr)

To submit a command to execute locally within task, use:

>>> task.shell("/bin/hostname")

To submit a command to execute to some distant nodes in parallel, use:

>>> task.shell("/bin/hostname", nodes="tiger[1-20]")

The previous examples submit commands to execute but do not allow result
interaction during their execution. For your program to interact during
command execution, it has to define event handlers that will listen for
local or remote events. These handlers are based on the EventHandler
class, defined in ClusterShell.Event. The following example shows how to
submit a command on a cluster with a registered event handler:

>>> task.shell("uname -r", nodes="node[1-9]", handler=MyEventHandler())

Run task in its associated thread (will block only if the calling thread is
the task associated thread):

>>> task.resume()

or:

>>> task.run()

You can also pass arguments to task.run() to schedule a command exactly
like in task.shell(), and run it:

>>> task.run("hostname", nodes="tiger[1-20]", handler=MyEventHandler())

A common need is to set a maximum delay for command execution, especially
when the command time is not known. Doing this with ClusterShell Task is
very straighforward. To limit the execution time on each node, use the
timeout parameter of shell() or run() methods to set a delay in seconds,
like:

>>> task.run("check_network.sh", nodes="tiger[1-20]", timeout=30)

You can then either use Task’s iter_keys_timeout() method after execution
to see on what nodes the command has timed out, or listen for ev_timeout()
events in your event handler.

To get command result, you can either use Task’s iter_buffers() method for
standard output, iter_errors() for standard error after command execution
(common output contents are automatically gathered), or you can listen for
ev_read() and ev_error() events in your event handler and get live command
output.

To get command return codes, you can either use Task’s iter_retcodes(),
node_retcode() and max_retcode() methods after command execution, or
listen for ev_hup() events in your event handler.

	
__init__(thread=None, defaults=None)

	Initialize a Task, creating a new non-daemonic thread if
needed.

	
static __new__(thread=None, defaults=None)

	For task bound to a specific thread, this class acts like a
“thread singleton”, so new style class is used and new object
are only instantiated if needed.

	
__weakref__

	list of weak references to the object (if defined)

	
abort(kill=False)

	Abort a task. Aborting a task removes (and stops when needed)
all workers. If optional parameter kill is True, the task
object is unbound from the current thread, so calling
task_self() creates a new Task object.

	
copy(source, dest, nodes, **kwargs)

	Copy local file to distant nodes.

	
default(default_key, def_val=None)

	Return per-task value for key from the “default” dictionary.
See set_default() for a list of reserved task default_keys.

	
default_excepthook(exc_type, exc_value, tb)

	Default excepthook for a newly Task. When an exception is
raised and uncaught on Task thread, excepthook is called, which
is default_excepthook by default. Once excepthook overriden,
you can still call default_excepthook if needed.

	
flush_buffers()

	Flush all task messages (from all task workers).

	
flush_errors()

	Flush all task error messages (from all task workers).

	
info(info_key, def_val=None)

	Return per-task information. See set_info() for a list of
reserved task info_keys.

	
iter_buffers(match_keys=None)

	Iterate over buffers, returns a tuple (buffer, keys). For remote
workers (Ssh), keys are list of nodes. In that case, you should use
NodeSet.fromlist(keys) to get a NodeSet instance (which is more
convenient and efficient):

Optional parameter match_keys add filtering on these keys.

Usage example:

>>> for buffer, nodelist in task.iter_buffers():
... print NodeSet.fromlist(nodelist)
... print buffer

	
iter_errors(match_keys=None)

	Iterate over error buffers, returns a tuple (buffer, keys).

See iter_buffers().

	
iter_keys_timeout()

	Iterate over timed out keys (ie. nodes).

	
iter_retcodes(match_keys=None)

	Iterate over return codes, returns a tuple (rc, keys).

Optional parameter match_keys add filtering on these keys.

If the process exits normally, the return code is its exit
status. If the process is terminated by a signal, the return
code is 128 + signal number.

	
join()

	Suspend execution of the calling thread until the target task
terminates, unless the target task has already terminated.

	
key_buffer(key)

	Get buffer for a specific key. When the key is associated
to multiple workers, the resulting buffer will contain
all workers content that may overlap. This method returns an
empty buffer if key is not found in any workers.

	
key_error(key)

	Get error buffer for a specific key. When the key is associated
to multiple workers, the resulting buffer will contain all
workers content that may overlap. This method returns an empty
error buffer if key is not found in any workers.

	
key_retcode(key)

	Return return code for a specific key. When the key is
associated to multiple workers, return the max return
code from these workers. Raises a KeyError if key is not found
in any finished workers.

	
load_topology(topology_file)

	Load propagation topology from provided file.

On success, task.topology is set to a corresponding TopologyTree
instance.

On failure, task.topology is left untouched and a TopologyError
exception is raised.

	
max_retcode()

	
	Get max return code encountered during last run

	
	or None in the following cases:

	
	all commands timed out,

	no command was executed.

If the process exits normally, the return code is its exit
status. If the process is terminated by a signal, the return
code is 128 + signal number.

	
node_buffer(key)

	Get buffer for a specific key. When the key is associated
to multiple workers, the resulting buffer will contain
all workers content that may overlap. This method returns an
empty buffer if key is not found in any workers.

	
node_error(key)

	Get error buffer for a specific key. When the key is associated
to multiple workers, the resulting buffer will contain all
workers content that may overlap. This method returns an empty
error buffer if key is not found in any workers.

	
node_retcode(key)

	Return return code for a specific key. When the key is
associated to multiple workers, return the max return
code from these workers. Raises a KeyError if key is not found
in any finished workers.

	
num_timeout()

	Return the number of timed out “keys” (ie. nodes).

	
port(handler=None, autoclose=False)

	Create a new task port. A task port is an abstraction object to
deliver messages reliably between tasks.

	Basic rules:

	
	A task can send messages to another task port (thread safe).

	A task can receive messages from an acquired port either by
setting up a notification mechanism or using a polling
mechanism that may block the task waiting for a message
sent on the port.

	A port can be acquired by one task only.

If handler is set to a valid EventHandler object, the port is
a send-once port, ie. a message sent to this port generates an
ev_msg event notification issued the port’s task. If handler
is not set, the task can only receive messages on the port by
calling port.msg_recv().

	
rcopy(source, dest, nodes, **kwargs)

	Copy distant file or directory to local node.

	
remove_port(*args, **kwargs)

	Close and remove a port from task previously created with port().

	
resume(timeout=None)

	Resume task. If task is task_self(), workers are executed in the
calling thread so this method will block until all (non-autoclosing)
workers have finished. This is always the case for a single-threaded
application (eg. which doesn’t create other Task() instance than
task_self()). Otherwise, the current thread doesn’t block. In that
case, you may then want to call task_wait() to wait for completion.

Warning: the timeout parameter can be used to set an hard limit of
task execution time (in seconds). In that case, a TimeoutError
exception is raised if this delay is reached. Its value is 0 by
default, which means no task time limit (TimeoutError is never
raised). In order to set a maximum delay for individual command
execution, you should use Task.shell()’s timeout parameter instead.

	
run(command=None, **kwargs)

	With arguments, it will schedule a command exactly like a Task.shell()
would have done it and run it.
This is the easiest way to simply run a command.

>>> task.run("hostname", nodes="foo")

Without argument, it starts all outstanding actions.
It behaves like Task.resume().

>>> task.shell("hostname", nodes="foo")
>>> task.shell("hostname", nodes="bar")
>>> task.run()

When used with a command, you can set a maximum delay of individual
command execution with the help of the timeout parameter (see
Task.shell’s parameters). You can then listen for ev_timeout() events
in your Worker event handlers, or use num_timeout() or
iter_keys_timeout() afterwards.
But, when used as an alias to Task.resume(), the timeout parameter
sets an hard limit of task execution time. In that case, a TimeoutError
exception is raised if this delay is reached.

	
running()

	Return True if the task is running.

	
schedule(*args, **kwargs)

	Schedule a worker for execution, ie. add worker in task running
loop. Worker will start processing immediately if the task is
running (eg. called from an event handler) or as soon as the
task is started otherwise. Only useful for manually instantiated
workers, for example:

>>> task = task_self()
>>> worker = WorkerSsh("node[2-3]", None, 10, command="/bin/ls")
>>> task.schedule(worker)
>>> task.resume()

	
set_default(default_key, value)

	Set task value for specified key in the dictionary “default”.
Users may store their own task-specific key, value pairs
using this method and retrieve them with default().

	Task default_keys are:

	
	“stderr”: Boolean value indicating whether to enable
stdout/stderr separation when using task.shell(), if not
specified explicitly (default: False).

	“stdout_msgtree”: Whether to instantiate standard output
MsgTree for automatic internal gathering of result messages
coming from Workers (default: True).

	“stderr_msgtree”: Same for stderr (default: True).

	“engine”: Used to specify an underlying Engine explicitly
(default: “auto”).

	“port_qlimit”: Size of port messages queue (default: 32).

	“worker”: Worker-based class used when spawning workers through
shell()/run().

Unlike set_info(), when called from the task’s thread or
not, set_default() immediately updates the underlying
dictionary in a thread-safe manner. This method doesn’t
wake up the engine when called.

	
set_info(*args, **kwargs)

	Set task value for a specific key information. Key, value
pairs can be passed to the engine and/or workers.
Users may store their own task-specific info key, value pairs
using this method and retrieve them with info().

	The following example changes the fanout value to 128:

	>>> task.set_info('fanout', 128)

	The following example enables debug messages:

	>>> task.set_info('debug', True)

	Task info_keys are:

	
	“debug”: Boolean value indicating whether to enable library
debugging messages (default: False).

	“print_debug”: Debug messages processing function. This
function takes 2 arguments: the task instance and the
message string (default: an internal function doing standard
print).

	“fanout”: Max number of registered clients in Engine at a
time (default: 64).

	“grooming_delay”: Message maximum end-to-end delay requirement
used for traffic grooming, in seconds as float (default: 0.5).

	“connect_timeout”: Time in seconds to wait for connecting to
remote host before aborting (default: 10).

	“command_timeout”: Time in seconds to wait for a command to
complete before aborting (default: 0, which means
unlimited).

Unlike set_default(), the underlying info dictionary is only
modified from the task’s thread. So calling set_info() from
another thread leads to queueing the request for late apply
(at run time) using the task dispatch port. When received,
the request wakes up the engine when the task is running and
the info dictionary is then updated.

	
shell(command, **kwargs)

	Schedule a shell command for local or distant parallel execution. This
essential method creates a local or remote Worker (depending on the
presence of the nodes parameter) and immediately schedules it for
execution in task’s runloop. So, if the task is already running
(ie. called from an event handler), the command is started immediately,
assuming current execution contraintes are met (eg. fanout value). If
the task is not running, the command is not started but scheduled for
late execution. See resume() to start task runloop.

The following optional parameters are passed to the underlying local
or remote Worker constructor:

	handler: EventHandler instance to notify (on event) – default is
no handler (None)

	timeout: command timeout delay expressed in second using a floating
point value – default is unlimited (None)

	autoclose: if set to True, the underlying Worker is automatically
aborted as soon as all other non-autoclosing task objects (workers,
ports, timers) have finished – default is False

	stderr: separate stdout/stderr if set to True – default is False.

	Local usage::

	
	task.shell(command [, key=key] [, handler=handler]

	[, timeout=secs] [, autoclose=enable_autoclose]
[, stderr=enable_stderr])

	Distant usage::

	
	task.shell(command, nodes=nodeset [, handler=handler]

	[, timeout=secs], [, autoclose=enable_autoclose]
[, tree=None|False|True] [, remote=False|True]
[, stderr=enable_stderr])

Example:

>>> task = task_self()
>>> task.shell("/bin/date", nodes="node[1-2345]")
>>> task.resume()

	
suspend()

	Suspend task execution. This method may be called from another
task (thread-safe). The function returns False if the task
cannot be suspended (eg. it’s not running), or returns True if
the task has been successfully suspended.
To resume a suspended task, use task.resume().

	
class tasksyncmethod

	Class encapsulating a function that checks if the calling
task is running or is the current task, and allowing it to be
used as a decorator making the wrapped task method thread-safe.

	
__weakref__

	list of weak references to the object (if defined)

	
Task.timer(fire, handler, interval=-1.0, autoclose=False)

	Create a timer bound to this task that fires at a preset time
in the future by invoking the ev_timer() method of `handler’
(provided EventHandler object). Timers can fire either only
once or repeatedly at fixed time intervals. Repeating timers
can also have their next firing time manually adjusted.

The mandatory parameter `fire’ sets the firing delay in seconds.

The optional parameter `interval’ sets the firing interval of
the timer. If not specified, the timer fires once and then is
automatically invalidated.

Time values are expressed in second using floating point
values. Precision is implementation (and system) dependent.

The optional parameter `autoclose’, if set to True, creates
an “autoclosing” timer: it will be automatically invalidated
as soon as all other non-autoclosing task’s objects (workers,
ports, timers) have finished. Default value is False, which
means the timer will retain task’s runloop until it is
invalidated.

Return a new EngineTimer instance.

See ClusterShell.Engine.Engine.EngineTimer for more details.

	
classmethod Task.wait(from_thread)

	Class method that blocks calling thread until all tasks have
finished (from a ClusterShell point of view, for instance,
their task.resume() return). It doesn’t necessarly mean that
associated threads have finished.

	
ClusterShell.Task.task_self(defaults=None)

	Return the current Task object, corresponding to the caller’s thread of
control (a Task object is always bound to a specific thread). This function
provided as a convenience is available in the top-level ClusterShell.Task
package namespace.

	
ClusterShell.Task.task_wait()

	Suspend execution of the calling thread until all tasks terminate, unless
all tasks have already terminated. This function is provided as a
convenience and is available in the top-level ClusterShell.Task package
namespace.

	
ClusterShell.Task.task_terminate()

	Destroy the Task instance bound to the current thread. A next call to
task_self() will create a new Task object. Not to be called from a signal
handler. This function provided as a convenience is available in the
top-level ClusterShell.Task package namespace.

	
ClusterShell.Task.task_cleanup()

	Cleanup routine to destroy all created tasks. This function provided as a
convenience is available in the top-level ClusterShell.Task package
namespace. This is mainly used for testing purposes and should be avoided
otherwise. task_cleanup() may be called from any threads but not from a
signal handler.

 Copyright 2016, Stephane Thiell.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	clustershell 1.7.2 documentation

 	Python API

Defaults

ClusterShell Defaults module.

Manage library defaults.

	
class ClusterShell.Defaults.Defaults(filenames)

	Class used to manipulate ClusterShell defaults.

The following attributes may be read at any time and also changed
programmatically, for most of them before ClusterShell objects
are initialized (like Task):

	stderr (boolean; default is False)

	stdout_msgtree (boolean; default is True)

	stderr_msgtree (boolean; default is True)

	engine (string; default is 'auto')

	port_qlimit (integer; default is 100)

	local_workername (string; default is 'exec')

	distant_workername (string; default is 'ssh')

	debug (boolean; default is False)

	print_debug (function; default is internal)

	fanout (integer; default is 64)

	grooming_delay (float; default is 0.25)

	connect_timeout (float; default is 10)

	command_timeout (float; default is 0)

Example of use:

>>> from ClusterShell.Defaults import DEFAULTS
>>> from ClusterShell.Task import task_self
>>> # Change default distant worker to rsh (WorkerRsh)
... DEFAULTS.distant_workername = 'rsh'
>>> task = task_self()
>>> task.run("uname -r", nodes="cs[01-03]")
<ClusterShell.Worker.Rsh.WorkerRsh object at 0x1f4a410>
>>> list((str(msg), nodes) for msg, nodes in task.iter_buffers())
[('3.10.0-229.7.2.el7.x86_64', ['cs02', 'cs01', 'cs03'])]

The library default values of all of the above attributes may be changed
using the defaults.conf configuration file, except for print_debug
(cf. Library Defaults). An example defaults.conf file should be
included with ClusterShell. Remember that this could affect all
applications using ClusterShell.

	
ClusterShell.Defaults.DEFAULTS

	

Globally accessible Defaults object.

 Copyright 2016, Stephane Thiell.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	clustershell 1.7.2 documentation

 	Python API

Event

ClusterShell Event handling.

This module contains the base class EventHandler which defines a simple
interface through methods to handle events coming from ClusterShell I/O Engine
clients. Events are generated by Worker, EngineTimer or EnginePort objects.

	
class ClusterShell.Event.EventHandler

	ClusterShell EventHandler interface.

Derived class should implement the following methods to listen for Worker,
EngineTimer or EnginePort chosen events.

	
ev_start(worker)

	Called to indicate that a worker has just started.

	Parameters:	worker – Worker object

	
ev_pickup(worker)

	Called to indicate that a worker command for a specific node (or key)
has just started. Called for each node.

	Parameters:	worker – Worker object

Available worker attributes:

	Worker.current_node - node (or key)

	
ev_read(worker)

	Called to indicate that a worker has data to read from a specific
node (or key).

	Parameters:	worker – Worker object

Available worker attributes:

	Worker.current_node - node (or key)

	Worker.current_msg - read message

	
ev_error(worker)

	Called to indicate that a worker has error to read on stderr from
a specific node (or key).

	Parameters:	worker – Worker object

Available worker attributes:

	Worker.current_node - node (or key)

	Worker.current_errmsg - read error message

	
ev_written(worker, node, sname, size)

	Called to indicate that some writing has been done by the worker to a
node on a given stream. This event is only generated when write()
is previously called on the worker.

This handler may be called very often depending on the number of target
nodes, the amount of data to write and the block size used by the
worker.

Note: up to ClusterShell 1.6, this event handler wasn’t implemented. To
properly handle ev_written after 1.6, the method signature must consist
of the following parameters:

	Parameters:	
	worker – Worker object

	node – node (or) key

	sname – stream name

	size – amount of bytes that has just been written to node/stream
associated with this event

	
ev_hup(worker)

	Called to indicate that a worker command for a specific node (or key)
has just finished. Called for each node.

	Parameters:	worker – Worker object

Available worker attributes:

	Worker.current_node - node (or key)

	Worker.current_rc - command return code

	
ev_timeout(worker)

	Called to indicate that a worker has timed out (worker timeout only).

	Parameters:	worker – Worker object

	
ev_close(worker)

	Called to indicate that a worker has just finished (it may already
have failed on timeout).

	Parameters:	worker – Worker object

	
ev_msg(port, msg)

	Called to indicate that a message has been received on an EnginePort.

Used to deliver messages reliably between tasks.

	Parameters:	
	port – EnginePort object on which a message has been received

	msg – the message object received

	
ev_timer(timer)

	Called to indicate that a timer is firing.

	Parameters:	timer – EngineTimer object that is firing

 Copyright 2016, Stephane Thiell.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	clustershell 1.7.2 documentation

 	Python API

EngineTimer

	
class ClusterShell.Engine.Engine.EngineTimer(fire_delay, interval, autoclose, handler)

	Concrete class EngineTimer

An EngineTimer object represents a timer bound to an engine that
fires at a preset time in the future. Timers can fire either only
once or repeatedly at fixed time intervals. Repeating timers can
also have their next firing time manually adjusted.

A timer is not a real-time mechanism; it fires when the task’s
underlying engine to which the timer has been added is running and
able to check if the timer’s firing time has passed.

	
invalidate()

	Invalidates a timer object, stopping it from ever firing again.

	
is_valid()

	Returns a boolean value that indicates whether an EngineTimer
object is valid and able to fire.

	
set_nextfire(fire_delay, interval=-1)

	Set the next firing delay in seconds for an EngineTimer object.

The optional paramater `interval’ sets the firing interval
of the timer. If not specified, the timer fires once and then
is automatically invalidated.

Time values are expressed in second using floating point
values. Precision is implementation (and system) dependent.

It is safe to call this method from the task owning this
timer object, in any event handlers, anywhere.

However, resetting a timer’s next firing time may be a
relatively expensive operation. It is more efficient to let
timers autorepeat or to use this method from the timer’s own
event handler callback (ie. from its ev_timer).

 Copyright 2016, Stephane Thiell.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	clustershell 1.7.2 documentation

 	Python API

Workers

ClusterShell public Workers API autodoc.

Notes:

	Workers named NameWorker are new-style workers.

	Workers named WorkerName are old-style workers.

Contents:

	Worker

	ExecWorker

	StreamWorker

	WorkerRsh

	WorkerPdsh

	WorkerPopen

	WorkerSsh

 Copyright 2016, Stephane Thiell.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	clustershell 1.7.2 documentation

 	Python API

 	Workers

Worker

ClusterShell worker interface.

A worker is a generic object which provides “grouped” work in a specific task.

	
class ClusterShell.Worker.Worker.Worker(handler)

	Worker is an essential base class for the ClusterShell library. The goal
of a worker object is to execute a common work on a single or several
targets (abstract notion) in parallel. Concret targets and also the notion
of local or distant targets are managed by Worker’s subclasses (for
example, see the DistantWorker base class).

A configured Worker object is associated to a specific ClusterShell Task,
which can be seen as a single-threaded Worker supervisor. Indeed, the work
to be done is executed in parallel depending on other Workers and Task’s
current paramaters, like current fanout value.

ClusterShell is designed to write event-driven applications, and the Worker
class is key here as Worker objects are passed as parameter of most event
handlers (see the ClusterShell.Event.EventHandler class).

The following public object variables are defined on some events, so you
may find them useful in event handlers:

	
	worker.current_node [ev_pickup,ev_read,ev_error,ev_hup]

	node/key concerned by event

	
	worker.current_msg [ev_read]

	message just read (from stdout)

	
	worker.current_errmsg [ev_error]

	error message just read (from stderr)

	
	worker.current_rc [ev_hup]

	return code just received

Example of use:

>>> from ClusterShell.Event import EventHandler
>>> class MyOutputHandler(EventHandler):
... def ev_read(self, worker):
... node = worker.current_node
... line = worker.current_msg
... print "%s: %s" % (node, line)
...

	
__init__(handler)

	Initializer. Should be called from derived classes.

	
__weakref__

	list of weak references to the object (if defined)

	
abort()

	Abort processing any action by this worker.

	
current_errmsg = None

	set to stderr message in event handler

	
current_msg = None

	set to stdout message in event handler

	
current_node = None

	set to node in event handler

	
current_rc = None

	set to return code in event handler

	
current_sname = None

	set to stream name in event handler

	
did_timeout()

	Return whether this worker has aborted due to timeout.

	
eh = None

	associated EventHandler

	
flush_buffers()

	Flush any messages associated to this worker.

	
flush_errors()

	Flush any error messages associated to this worker.

	
last_error()

	Get last error message from event handler.
[DEPRECATED] use current_errmsg

	
last_read()

	Get last read message from event handler.
[DEPRECATED] use current_msg

	
read(node=None, sname='stdout')

	Read worker stream buffer.

Return stream read buffer of current worker.

	Arguments:

	
	node – node name; can also be set to None for simple worker

	having worker.key defined (default is None)

sname – stream name (default is ‘stdout’)

	
started = None

	set to True when worker has started

	
task = None

	worker’s task when scheduled or None

	
class ClusterShell.Worker.Worker.DistantWorker(handler)

	Base class DistantWorker.

DistantWorker provides a useful set of setters/getters to use with
distant workers like ssh or pdsh.

	
iter_buffers(match_keys=None)

	Returns an iterator over available buffers and associated
NodeSet. If the optional parameter match_keys is defined, only
keys found in match_keys are returned.

	
iter_errors(match_keys=None)

	Returns an iterator over available error buffers and associated
NodeSet. If the optional parameter match_keys is defined, only
keys found in match_keys are returned.

	
iter_keys_timeout()

	Iterate over timed out keys (ie. nodes) for a specific worker.

	
iter_node_buffers(match_keys=None)

	Returns an iterator over each node and associated buffer.

	
iter_node_errors(match_keys=None)

	Returns an iterator over each node and associated error buffer.

	
iter_node_retcodes()

	Returns an iterator over each node and associated return code.

	
iter_retcodes(match_keys=None)

	Returns an iterator over return codes and associated NodeSet.
If the optional parameter match_keys is defined, only keys
found in match_keys are returned.

	
last_error()

	Get last (node, error_buffer), useful in an EventHandler.ev_error()
[DEPRECATED] use (current_node, current_errmsg)

	
last_node()

	Get last node, useful to get the node in an EventHandler
callback like ev_read().
[DEPRECATED] use current_node

	
last_read()

	Get last (node, buffer), useful in an EventHandler.ev_read()
[DEPRECATED] use (current_node, current_msg)

	
last_retcode()

	Get last (node, rc), useful in an EventHandler.ev_hup()
[DEPRECATED] use (current_node, current_rc)

	
node_buffer(node)

	Get specific node buffer.

	
node_error(node)

	Get specific node error buffer.

	
node_error_buffer(node)

	Get specific node error buffer.

	
node_rc(node)

	Get specific node return code.

	Raises:	KeyError – command on node has not yet finished (no return code
available), or this node is not known by this worker

	
node_retcode(node)

	Get specific node return code.

	Raises:	KeyError – command on node has not yet finished (no return code
available), or this node is not known by this worker

	
num_timeout()

	Return the number of timed out “keys” (ie. nodes) for this worker.

 Copyright 2016, Stephane Thiell.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	clustershell 1.7.2 documentation

 	Python API

 	Workers

ExecWorker

	
class ClusterShell.Worker.Exec.ExecWorker(nodes, handler, timeout=None, **kwargs)

	ClusterShell simple execution worker Class.

It runs commands locally. If a node list is provided, one command will be
launched for each node and specific keywords will be replaced based on node
name and rank.

Local shell usage example:

>>> worker = ExecWorker(nodeset, handler=MyEventHandler(),
... timeout=30, command="/bin/uptime")
>>> task.schedule(worker) # schedule worker for execution
>>> task.run() # run

Local copy usage example:

>>> worker = ExecWorker(nodeset, handler=MyEventHandler(),
... source="/etc/my.cnf",
... dest="/etc/my.cnf.bak")
>>> task.schedule(worker) # schedule worker for execution
>>> task.run() # run

connect_timeout option is ignored by this worker.

	
COPY_CLASS

	alias of CopyClient

	
SHELL_CLASS

	alias of ExecClient

	
__init__(nodes, handler, timeout=None, **kwargs)

	Create an ExecWorker and its engine client instances.

	
abort()

	Abort processing any action by this worker.

	
set_write_eof(sname=None)

	Tell worker to close its writer file descriptors once flushed. Do not
perform writes after this call.

	
write(buf, sname=None)

	Write to worker clients.

	
class ClusterShell.Worker.Exec.ExecClient(node, command, worker, stderr, timeout, autoclose=False, rank=None)

	Run a simple local command.

Useful as a superclass for other more specific workers.

	
__init__(node, command, worker, stderr, timeout, autoclose=False, rank=None)

	Create an EngineClient-type instance to locally run `command’.

	Parameters:	node – will be used as key.

 Copyright 2016, Stephane Thiell.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	clustershell 1.7.2 documentation

 	Python API

 	Workers

StreamWorker

	
class ClusterShell.Worker.Worker.StreamWorker(handler, key=None, stderr=False, timeout=-1, autoclose=False, client_class=<class ClusterShell.Worker.Worker.StreamClient>)

	StreamWorker base class [v1.7+]

The StreamWorker class implements a base (but concrete) Worker that
can read and write to multiple streams. Unlike most other Workers,
it does not execute any external commands by itself. Rather, it
should be pre-bound to “streams”, ie. file(s) or file descriptor(s),
using the two following methods:

>>> worker.set_reader('stream1', fd1)
>>> worker.set_writer('stream2', fd2)

Like other Workers, the StreamWorker instance should be associated
with a Task using task.schedule(worker). When the task engine is
ready to process the StreamWorker, all of its streams are being
processed together. For that reason, it is not possible to add new
readers or writers to a running StreamWorker (ie. task is running
and worker is already scheduled).

Configured readers will generate ev_read() events when data is
available for reading. So, the following additional public worker
variable is available and defines the stream name for the event:

>>> worker.current_sname [ev_read,ev_error]

Please note that ev_error() is called instead of ev_read() when the
stream name is ‘stderr’. Indeed, all other stream names use
ev_read().

Configured writers will allow the use of the method write(), eg.
worker.write(data, ‘stream2’), to write to the stream.

	
abort()

	Abort processing any action by this worker.

	
read(node=None, sname='stdout')

	Read worker stream buffer.

Return stream read buffer of current worker.

	Arguments:

	
	node – node name; can also be set to None for simple worker

	having worker.key defined (default is None)

sname – stream name (default is ‘stdout’)

	
set_key(key)

	Source key for this worker is free for use.

Use this method to set the custom source key for this worker.

	
set_reader(sname, sfile, retain=True, closefd=True)

	Add a readable stream to StreamWorker.

	Arguments:

	sname – the name of the stream (string)
sfile – the stream file or file descriptor
retain – whether the stream retains engine client

(default is True)

	closefd – whether to close fd when the stream is closed

	(default is True)

	
set_write_eof(sname=None)

	Tell worker to close its writer file descriptor once flushed.

Do not perform writes after this call. Like write(), sname can
be optionally specified to target a specific writable stream,
otherwise all writable streams are marked as EOF.

	
set_writer(sname, sfile, retain=True, closefd=True)

	Set a writable stream to StreamWorker.

	Arguments:

	sname – the name of the stream (string)
sfile – the stream file or file descriptor
retain – whether the stream retains engine client

(default is True)

	closefd – whether to close fd when the stream is closed

	(default is True)

	
write(buf, sname=None)

	Write to worker.

If sname is specified, write to the associated stream,
otherwise write to all writable streams.

	
class ClusterShell.Worker.Worker.StreamClient(worker, key, stderr, timeout, autoclose)

	StreamWorker’s default EngineClient.

StreamClient is the EngineClient subclass used by default by
StreamWorker. It handles some generic methods to pass data to the
StreamWorker.

	
set_write_eof(sname=None)

	Set EOF flag to writable stream(s).

	
write(buf, sname=None)

	Write to writable stream(s).

 Copyright 2016, Stephane Thiell.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	clustershell 1.7.2 documentation

 	Python API

 	Workers

WorkerRsh

	
class ClusterShell.Worker.Rsh.WorkerRsh(nodes, handler, timeout=None, **kwargs)

	ClusterShell rsh-based worker Class.

	Remote Shell (rsh) usage example:

	>>> worker = WorkerRsh(nodeset, handler=MyEventHandler(),
... timeout=30, command="/bin/hostname")
>>> task.schedule(worker) # schedule worker for execution
>>> task.resume() # run

	Remote Copy (rcp) usage example:

	>>> worker = WorkerRsh(nodeset, handler=MyEventHandler(),
... source="/etc/my.conf",
... dest="/etc/my.conf")
>>> task.schedule(worker) # schedule worker for execution
>>> task.resume() # run

connect_timeout option is ignored by this worker.

	
COPY_CLASS

	alias of RcpClient

	
SHELL_CLASS

	alias of RshClient

	
class ClusterShell.Worker.Rsh.RshClient(node, command, worker, stderr, timeout, autoclose=False, rank=None)

	Rsh EngineClient.

	
class ClusterShell.Worker.Rsh.RcpClient(node, source, dest, worker, stderr, timeout, autoclose, preserve, reverse, rank=None)

	Rcp EngineClient.

 Copyright 2016, Stephane Thiell.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	clustershell 1.7.2 documentation

 	Python API

 	Workers

WorkerPdsh

	
class ClusterShell.Worker.Pdsh.WorkerPdsh(nodes, handler, timeout=None, **kwargs)

	ClusterShell pdsh-based worker Class.

	Remote Shell (pdsh) usage example:

	>>> worker = WorkerPdsh(nodeset, handler=MyEventHandler(),
... timeout=30, command="/bin/hostname")
>>> task.schedule(worker) # schedule worker for execution
>>> task.resume() # run

	Remote Copy (pdcp) usage example:

	>>> worker = WorkerPdsh(nodeset, handler=MyEventHandler(),
... timeout=30, source="/etc/my.conf",
... dest="/etc/my.conf")
>>> task.schedule(worker) # schedule worker for execution
>>> task.resume() # run

	Known limitations:

	
	write() is not supported by WorkerPdsh

	return codes == 0 are not garanteed when a timeout is used (rc > 0
are fine)

	
COPY_CLASS

	alias of PdcpClient

	
SHELL_CLASS

	alias of PdshClient

	
set_write_eof()

	Tell worker to close its writer file descriptor once flushed. Do not
perform writes after this call.

Not supported by PDSH Worker.

	
write(buf)

	Write data to process. Not supported with Pdsh worker.

	
class ClusterShell.Worker.Pdsh.PdshClient(node, command, worker, stderr, timeout, autoclose=False, rank=None)

	EngineClient which run ‘pdsh’

	
class ClusterShell.Worker.Pdsh.PdcpClient(node, source, dest, worker, stderr, timeout, autoclose, preserve, reverse, rank=None)

	EngineClient when pdsh is run to copy file, using pdcp.

 Copyright 2016, Stephane Thiell.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	clustershell 1.7.2 documentation

 	Python API

 	Workers

WorkerPopen

	
class ClusterShell.Worker.Popen.WorkerPopen(command, key=None, handler=None, stderr=False, timeout=-1, autoclose=False)

	Implements the Popen Worker.

	
__init__(command, key=None, handler=None, stderr=False, timeout=-1, autoclose=False)

	Initialize Popen worker.

	
retcode()

	Return return code or None if command is still in progress.

	
class ClusterShell.Worker.Popen.PopenClient(worker, key, stderr, timeout, autoclose)

	

 Copyright 2016, Stephane Thiell.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	clustershell 1.7.2 documentation

 	Python API

 	Workers

WorkerSsh

	
class ClusterShell.Worker.Ssh.WorkerSsh(nodes, handler, timeout=None, **kwargs)

	ClusterShell ssh-based worker Class.

	Remote Shell (ssh) usage example:

	>>> worker = WorkerSsh(nodeset, handler=MyEventHandler(),
... timeout=30, command="/bin/hostname")
>>> task.schedule(worker) # schedule worker for execution
>>> task.resume() # run

	Remote Copy (scp) usage example:

	>>> worker = WorkerSsh(nodeset, handler=MyEventHandler(),
... timeout=30, source="/etc/my.conf",
... dest="/etc/my.conf")
>>> task.schedule(worker) # schedule worker for execution
>>> task.resume() # run

	
COPY_CLASS

	alias of ScpClient

	
SHELL_CLASS

	alias of SshClient

	
class ClusterShell.Worker.Ssh.SshClient(node, command, worker, stderr, timeout, autoclose=False, rank=None)

	Ssh EngineClient.

	
class ClusterShell.Worker.Ssh.ScpClient(node, source, dest, worker, stderr, timeout, autoclose, preserve, reverse, rank=None)

	Scp EngineClient.

 Copyright 2016, Stephane Thiell.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	clustershell 1.7.2 documentation

Going further

Running the test suite

Get the latest Source code first.

Note

“The intent of regression testing is to assure that in the process of
fixing a defect no existing functionality has been broken. Non-regression
testing is performed to test that an intentional change has had the desired
effect.” (from Wikipedia [https://en.wikipedia.org/wiki/Non-regression_testing])

The tests directory of the source archive (not the RPM) contains all
regression and non-regression tests. To run all tests, use the following:

$ cd tests
$ nosetests -sv --all-modules .

Some tests assume that ssh(1) to localhost is allowed for the current user.
Some tests use bc(1). And some tests need pdsh(1) installed.

Bug reports

We use Github Issues [https://github.com/cea-hpc/clustershell/issues] as issue tracking system for the ClusterShell
development project. There, you can report bugs or suggestions after logged in
with your Github account.

 Copyright 2016, Stephane Thiell.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	clustershell 1.7.2 documentation

 Python Module Index

 c

 			

 		
 c	

 	[image: -]
 	
 ClusterShell	

 	
 	
 ClusterShell.Defaults	

 	
 	
 ClusterShell.Event	

 	
 	
 ClusterShell.MsgTree	

 	
 	
 ClusterShell.NodeSet	

 	
 	
 ClusterShell.NodeUtils	

 	
 	
 ClusterShell.RangeSet	

 	
 	
 ClusterShell.Task	

 	
 	
 ClusterShell.Worker.Worker	

 Copyright 2016, Stephane Thiell.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	clustershell 1.7.2 documentation

Index

 _
 | A
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | V
 | W

_

 	

 	__and__() (ClusterShell.NodeSet.NodeSet method)

 	

 	(ClusterShell.RangeSet.RangeSet method)

 	(ClusterShell.RangeSet.RangeSetND method)

 	__contains__() (ClusterShell.NodeSet.NodeSet method)

 	

 	(ClusterShell.RangeSet.RangeSet method)

 	(ClusterShell.RangeSet.RangeSetND method)

 	__copy__() (ClusterShell.NodeSet.NodeSet method)

 	

 	(ClusterShell.RangeSet.RangeSet method)

 	(ClusterShell.RangeSet.RangeSetND method)

 	__delattr__ (ClusterShell.NodeSet.NodeSet attribute)

 	__eq__() (ClusterShell.NodeSet.NodeSet method)

 	

 	(ClusterShell.RangeSet.RangeSet method)

 	(ClusterShell.RangeSet.RangeSetND method)

 	__format__() (ClusterShell.NodeSet.NodeSet method)

 	__ge__() (ClusterShell.NodeSet.NodeSet method)

 	

 	(ClusterShell.RangeSet.RangeSet method)

 	(ClusterShell.RangeSet.RangeSetND method)

 	__getattribute__ (ClusterShell.NodeSet.NodeSet attribute)

 	__getitem__() (ClusterShell.MsgTree.MsgTree method)

 	

 	(ClusterShell.NodeSet.NodeSet method)

 	(ClusterShell.RangeSet.RangeSet method)

 	(ClusterShell.RangeSet.RangeSetND method)

 	__getstate__() (ClusterShell.NodeSet.NodeSet method)

 	__gt__() (ClusterShell.NodeSet.NodeSet method)

 	__hash__ (ClusterShell.NodeSet.NodeSet attribute)

 	__iand__() (ClusterShell.NodeSet.NodeSet method)

 	

 	(ClusterShell.RangeSet.RangeSet method)

 	(ClusterShell.RangeSet.RangeSetND method)

 	__init__() (ClusterShell.MsgTree.MsgTree method)

 	

 	(ClusterShell.NodeSet.NodeSet method)

 	(ClusterShell.NodeUtils.GroupResolver method)

 	(ClusterShell.NodeUtils.GroupResolverConfig method)

 	(ClusterShell.NodeUtils.GroupSource method)

 	(ClusterShell.RangeSet.RangeSet method)

 	(ClusterShell.RangeSet.RangeSetND method)

 	(ClusterShell.Task.Task method)

 	(ClusterShell.Worker.Exec.ExecClient method)

 	(ClusterShell.Worker.Exec.ExecWorker method)

 	(ClusterShell.Worker.Popen.WorkerPopen method)

 	(ClusterShell.Worker.Worker.Worker method)

 	__ior__() (ClusterShell.NodeSet.NodeSet method)

 	

 	(ClusterShell.RangeSet.RangeSet method)

 	(ClusterShell.RangeSet.RangeSetND method)

 	__isub__() (ClusterShell.NodeSet.NodeSet method)

 	

 	(ClusterShell.RangeSet.RangeSet method)

 	(ClusterShell.RangeSet.RangeSetND method)

 	__iter__() (ClusterShell.MsgTree.MsgTree method)

 	

 	(ClusterShell.NodeSet.NodeSet method)

 	(ClusterShell.RangeSet.RangeSet method)

 	__ixor__() (ClusterShell.NodeSet.NodeSet method)

 	

 	(ClusterShell.RangeSet.RangeSet method)

 	(ClusterShell.RangeSet.RangeSetND method)

 	

 	__le__() (ClusterShell.NodeSet.NodeSet method)

 	

 	(ClusterShell.RangeSet.RangeSet method)

 	(ClusterShell.RangeSet.RangeSetND method)

 	__len__() (ClusterShell.MsgTree.MsgTree method)

 	

 	(ClusterShell.NodeSet.NodeSet method)

 	(ClusterShell.RangeSet.RangeSetND method)

 	__lt__() (ClusterShell.NodeSet.NodeSet method)

 	__new__() (ClusterShell.NodeSet.NodeSet method)

 	

 	(ClusterShell.RangeSet.RangeSet static method)

 	(ClusterShell.Task.Task static method)

 	__or__() (ClusterShell.NodeSet.NodeSet method)

 	

 	(ClusterShell.RangeSet.RangeSet method)

 	(ClusterShell.RangeSet.RangeSetND method)

 	__reduce__() (ClusterShell.NodeSet.NodeSet method)

 	

 	(ClusterShell.RangeSet.RangeSet method)

 	__reduce_ex__() (ClusterShell.NodeSet.NodeSet method)

 	__repr__ (ClusterShell.NodeSet.NodeSet attribute)

 	__repr__() (ClusterShell.RangeSet.RangeSet method)

 	__setattr__ (ClusterShell.NodeSet.NodeSet attribute)

 	__setstate__() (ClusterShell.NodeSet.NodeSet method)

 	

 	(ClusterShell.RangeSet.RangeSet method)

 	__sizeof__() (ClusterShell.NodeSet.NodeSet method)

 	__str__() (ClusterShell.NodeSet.NodeSet method)

 	

 	(ClusterShell.RangeSet.RangeSet method)

 	(ClusterShell.RangeSet.RangeSetND method)

 	__sub__() (ClusterShell.NodeSet.NodeSet method)

 	

 	(ClusterShell.RangeSet.RangeSet method)

 	(ClusterShell.RangeSet.RangeSetND method)

 	__subclasshook__() (ClusterShell.NodeSet.NodeSet method)

 	__weakref__ (ClusterShell.MsgTree.MsgTree attribute)

 	

 	(ClusterShell.NodeSet.NodeSet attribute)

 	(ClusterShell.NodeUtils.GroupResolver attribute)

 	(ClusterShell.NodeUtils.GroupSource attribute)

 	(ClusterShell.RangeSet.RangeSetND attribute)

 	(ClusterShell.RangeSet.RangeSetND.precond_fold attribute)

 	(ClusterShell.Task.Task attribute)

 	(ClusterShell.Task.Task.tasksyncmethod attribute)

 	(ClusterShell.Worker.Worker.Worker attribute)

 	__xor__() (ClusterShell.NodeSet.NodeSet method)

 	

 	(ClusterShell.RangeSet.RangeSet method)

 	(ClusterShell.RangeSet.RangeSetND method)

A

 	

 	abort() (ClusterShell.Task.Task method)

 	

 	(ClusterShell.Worker.Exec.ExecWorker method)

 	(ClusterShell.Worker.Worker.StreamWorker method)

 	(ClusterShell.Worker.Worker.Worker method)

 	add() (ClusterShell.MsgTree.MsgTree method)

 	

 	(ClusterShell.NodeSet.NodeSet method)

 	(ClusterShell.RangeSet.RangeSet method)

 	add_range() (ClusterShell.RangeSet.RangeSet method)

 	

 	add_source() (ClusterShell.NodeUtils.GroupResolver method)

 	all_nodes() (ClusterShell.NodeUtils.GroupResolver method)

 	autostep (ClusterShell.NodeSet.NodeSet attribute)

 	

 	(ClusterShell.RangeSet.RangeSet attribute)

 	(ClusterShell.RangeSet.RangeSetND attribute)

C

 	

 	clear() (ClusterShell.MsgTree.MsgTree method)

 	

 	(ClusterShell.NodeSet.NodeSet method)

 	(ClusterShell.RangeSet.RangeSet method)

 	ClusterShell.Defaults (module)

 	ClusterShell.Event (module)

 	ClusterShell.MsgTree (module)

 	ClusterShell.NodeSet (module)

 	ClusterShell.NodeUtils (module)

 	ClusterShell.RangeSet (module)

 	ClusterShell.Task (module)

 	ClusterShell.Worker.Worker (module)

 	

 	contiguous() (ClusterShell.NodeSet.NodeSet method)

 	

 	(ClusterShell.RangeSet.RangeSet method)

 	(ClusterShell.RangeSet.RangeSetND method)

 	copy() (ClusterShell.NodeSet.NodeSet method)

 	

 	(ClusterShell.RangeSet.RangeSet method)

 	(ClusterShell.RangeSet.RangeSetND method)

 	(ClusterShell.Task.Task method)

 	COPY_CLASS (ClusterShell.Worker.Exec.ExecWorker attribute)

 	

 	(ClusterShell.Worker.Pdsh.WorkerPdsh attribute)

 	(ClusterShell.Worker.Rsh.WorkerRsh attribute)

 	(ClusterShell.Worker.Ssh.WorkerSsh attribute)

 	current_errmsg (ClusterShell.Worker.Worker.Worker attribute)

 	current_msg (ClusterShell.Worker.Worker.Worker attribute)

 	current_node (ClusterShell.Worker.Worker.Worker attribute)

 	current_rc (ClusterShell.Worker.Worker.Worker attribute)

 	current_sname (ClusterShell.Worker.Worker.Worker attribute)

D

 	

 	default() (ClusterShell.Task.Task method)

 	default_excepthook() (ClusterShell.Task.Task method)

 	default_source_name (ClusterShell.NodeUtils.GroupResolver attribute)

 	Defaults (class in ClusterShell.Defaults)

 	DEFAULTS (in module ClusterShell.Defaults)

 	did_timeout() (ClusterShell.Worker.Worker.Worker method)

 	

 	difference() (ClusterShell.NodeSet.NodeSet method)

 	

 	(ClusterShell.RangeSet.RangeSet method)

 	(ClusterShell.RangeSet.RangeSetND method)

 	difference_update() (ClusterShell.NodeSet.NodeSet method)

 	

 	(ClusterShell.RangeSet.RangeSet method)

 	(ClusterShell.RangeSet.RangeSetND method)

 	dim() (ClusterShell.RangeSet.RangeSet method)

 	

 	(ClusterShell.RangeSet.RangeSetND method)

 	discard() (ClusterShell.RangeSet.RangeSet method)

 	DistantWorker (class in ClusterShell.Worker.Worker)

E

 	

 	eh (ClusterShell.Worker.Worker.Worker attribute)

 	EngineTimer (class in ClusterShell.Engine.Engine)

 	ev_close() (ClusterShell.Event.EventHandler method)

 	ev_error() (ClusterShell.Event.EventHandler method)

 	ev_hup() (ClusterShell.Event.EventHandler method)

 	ev_msg() (ClusterShell.Event.EventHandler method)

 	ev_pickup() (ClusterShell.Event.EventHandler method)

 	ev_read() (ClusterShell.Event.EventHandler method)

 	

 	ev_start() (ClusterShell.Event.EventHandler method)

 	ev_timeout() (ClusterShell.Event.EventHandler method)

 	ev_timer() (ClusterShell.Event.EventHandler method)

 	ev_written() (ClusterShell.Event.EventHandler method)

 	EventHandler (class in ClusterShell.Event)

 	ExecClient (class in ClusterShell.Worker.Exec)

 	ExecWorker (class in ClusterShell.Worker.Exec)

 	expand() (in module ClusterShell.NodeSet)

F

 	

 	flush_buffers() (ClusterShell.Task.Task method)

 	

 	(ClusterShell.Worker.Worker.Worker method)

 	flush_errors() (ClusterShell.Task.Task method)

 	

 	(ClusterShell.Worker.Worker.Worker method)

 	fold() (ClusterShell.RangeSet.RangeSetND method)

 	

 	(in module ClusterShell.NodeSet)

 	

 	fromall() (ClusterShell.NodeSet.NodeSet class method)

 	fromlist() (ClusterShell.NodeSet.NodeSet class method)

 	

 	(ClusterShell.RangeSet.RangeSet class method)

 	fromone() (ClusterShell.RangeSet.RangeSet class method)

G

 	

 	get() (ClusterShell.MsgTree.MsgTree method)

 	get_autostep() (ClusterShell.NodeSet.NodeSet method)

 	

 	(ClusterShell.RangeSet.RangeSet method)

 	(ClusterShell.RangeSet.RangeSetND method)

 	group_nodes() (ClusterShell.NodeUtils.GroupResolver method)

 	grouplist() (ClusterShell.NodeUtils.GroupResolver method)

 	

 	(in module ClusterShell.NodeSet)

 	

 	GroupResolver (class in ClusterShell.NodeUtils)

 	GroupResolverConfig (class in ClusterShell.NodeUtils)

 	groups() (ClusterShell.NodeSet.NodeSet method)

 	GroupSource (class in ClusterShell.NodeUtils)

H

 	

 	has_node_groups() (ClusterShell.NodeUtils.GroupResolver method)

I

 	

 	info() (ClusterShell.Task.Task method)

 	intersection() (ClusterShell.NodeSet.NodeSet method)

 	

 	(ClusterShell.RangeSet.RangeSet method)

 	(ClusterShell.RangeSet.RangeSetND method)

 	intersection_update() (ClusterShell.NodeSet.NodeSet method)

 	

 	(ClusterShell.RangeSet.RangeSet method)

 	(ClusterShell.RangeSet.RangeSetND method)

 	invalidate() (ClusterShell.Engine.Engine.EngineTimer method)

 	is_valid() (ClusterShell.Engine.Engine.EngineTimer method)

 	issubset() (ClusterShell.NodeSet.NodeSet method)

 	

 	(ClusterShell.RangeSet.RangeSet method)

 	(ClusterShell.RangeSet.RangeSetND method)

 	issuperset() (ClusterShell.NodeSet.NodeSet method)

 	

 	(ClusterShell.RangeSet.RangeSet method)

 	(ClusterShell.RangeSet.RangeSetND method)

 	items() (ClusterShell.MsgTree.MsgTree method)

 	

 	iter_buffers() (ClusterShell.Task.Task method)

 	

 	(ClusterShell.Worker.Worker.DistantWorker method)

 	iter_errors() (ClusterShell.Task.Task method)

 	

 	(ClusterShell.Worker.Worker.DistantWorker method)

 	iter_keys_timeout() (ClusterShell.Task.Task method)

 	

 	(ClusterShell.Worker.Worker.DistantWorker method)

 	iter_node_buffers() (ClusterShell.Worker.Worker.DistantWorker method)

 	iter_node_errors() (ClusterShell.Worker.Worker.DistantWorker method)

 	iter_node_retcodes() (ClusterShell.Worker.Worker.DistantWorker method)

 	iter_padding() (ClusterShell.RangeSet.RangeSetND method)

 	iter_retcodes() (ClusterShell.Task.Task method)

 	

 	(ClusterShell.Worker.Worker.DistantWorker method)

J

 	

 	join() (ClusterShell.Task.Task method)

K

 	

 	key_buffer() (ClusterShell.Task.Task method)

 	key_error() (ClusterShell.Task.Task method)

 	

 	key_retcode() (ClusterShell.Task.Task method)

 	keys() (ClusterShell.MsgTree.MsgTree method)

L

 	

 	last_error() (ClusterShell.Worker.Worker.DistantWorker method)

 	

 	(ClusterShell.Worker.Worker.Worker method)

 	last_node() (ClusterShell.Worker.Worker.DistantWorker method)

 	last_read() (ClusterShell.Worker.Worker.DistantWorker method)

 	

 	(ClusterShell.Worker.Worker.Worker method)

 	

 	last_retcode() (ClusterShell.Worker.Worker.DistantWorker method)

 	load_topology() (ClusterShell.Task.Task method)

M

 	

 	max_retcode() (ClusterShell.Task.Task method)

 	messages() (ClusterShell.MsgTree.MsgTree method)

 	

 	MsgTree (class in ClusterShell.MsgTree)

N

 	

 	node_buffer() (ClusterShell.Task.Task method)

 	

 	(ClusterShell.Worker.Worker.DistantWorker method)

 	node_error() (ClusterShell.Task.Task method)

 	

 	(ClusterShell.Worker.Worker.DistantWorker method)

 	node_error_buffer() (ClusterShell.Worker.Worker.DistantWorker method)

 	node_groups() (ClusterShell.NodeUtils.GroupResolver method)

 	node_rc() (ClusterShell.Worker.Worker.DistantWorker method)

 	

 	node_retcode() (ClusterShell.Task.Task method)

 	

 	(ClusterShell.Worker.Worker.DistantWorker method)

 	NodeSet (class in ClusterShell.NodeSet)

 	nsiter() (ClusterShell.NodeSet.NodeSet method)

 	num_timeout() (ClusterShell.Task.Task method)

 	

 	(ClusterShell.Worker.Worker.DistantWorker method)

P

 	

 	pads() (ClusterShell.RangeSet.RangeSetND method)

 	PdcpClient (class in ClusterShell.Worker.Pdsh)

 	PdshClient (class in ClusterShell.Worker.Pdsh)

 	

 	PopenClient (class in ClusterShell.Worker.Popen)

 	port() (ClusterShell.Task.Task method)

R

 	

 	RangeSet (class in ClusterShell.RangeSet)

 	RangeSetND (class in ClusterShell.RangeSet)

 	RangeSetND.precond_fold (class in ClusterShell.RangeSet)

 	rcopy() (ClusterShell.Task.Task method)

 	RcpClient (class in ClusterShell.Worker.Rsh)

 	read() (ClusterShell.Worker.Worker.StreamWorker method)

 	

 	(ClusterShell.Worker.Worker.Worker method)

 	regroup() (ClusterShell.NodeSet.NodeSet method)

 	remove() (ClusterShell.MsgTree.MsgTree method)

 	

 	(ClusterShell.NodeSet.NodeSet method)

 	(ClusterShell.RangeSet.RangeSet method)

 	remove_port() (ClusterShell.Task.Task method)

 	

 	resolv_all() (ClusterShell.NodeUtils.GroupSource method)

 	resolv_list() (ClusterShell.NodeUtils.GroupSource method)

 	resolv_map() (ClusterShell.NodeUtils.GroupSource method)

 	resolv_reverse() (ClusterShell.NodeUtils.GroupSource method)

 	resume() (ClusterShell.Task.Task method)

 	retcode() (ClusterShell.Worker.Popen.WorkerPopen method)

 	RshClient (class in ClusterShell.Worker.Rsh)

 	run() (ClusterShell.Task.Task method)

 	running() (ClusterShell.Task.Task method)

S

 	

 	schedule() (ClusterShell.Task.Task method)

 	ScpClient (class in ClusterShell.Worker.Ssh)

 	set_autostep() (ClusterShell.NodeSet.NodeSet method)

 	

 	(ClusterShell.RangeSet.RangeSet method)

 	(ClusterShell.RangeSet.RangeSetND method)

 	set_default() (ClusterShell.Task.Task method)

 	set_info() (ClusterShell.Task.Task method)

 	set_key() (ClusterShell.Worker.Worker.StreamWorker method)

 	set_nextfire() (ClusterShell.Engine.Engine.EngineTimer method)

 	set_reader() (ClusterShell.Worker.Worker.StreamWorker method)

 	set_std_group_resolver() (in module ClusterShell.NodeSet)

 	set_verbosity() (ClusterShell.NodeUtils.GroupResolver method)

 	set_write_eof() (ClusterShell.Worker.Exec.ExecWorker method)

 	

 	(ClusterShell.Worker.Pdsh.WorkerPdsh method)

 	(ClusterShell.Worker.Worker.StreamClient method)

 	(ClusterShell.Worker.Worker.StreamWorker method)

 	set_writer() (ClusterShell.Worker.Worker.StreamWorker method)

 	shell() (ClusterShell.Task.Task method)

 	

 	SHELL_CLASS (ClusterShell.Worker.Exec.ExecWorker attribute)

 	

 	(ClusterShell.Worker.Pdsh.WorkerPdsh attribute)

 	(ClusterShell.Worker.Rsh.WorkerRsh attribute)

 	(ClusterShell.Worker.Ssh.WorkerSsh attribute)

 	slices() (ClusterShell.RangeSet.RangeSet method)

 	sources() (ClusterShell.NodeUtils.GroupResolver method)

 	split() (ClusterShell.NodeSet.NodeSet method)

 	

 	(ClusterShell.RangeSet.RangeSet method)

 	SshClient (class in ClusterShell.Worker.Ssh)

 	started (ClusterShell.Worker.Worker.Worker attribute)

 	std_group_resolver() (in module ClusterShell.NodeSet)

 	StreamClient (class in ClusterShell.Worker.Worker)

 	StreamWorker (class in ClusterShell.Worker.Worker)

 	striter() (ClusterShell.NodeSet.NodeSet method)

 	

 	(ClusterShell.RangeSet.RangeSet method)

 	suspend() (ClusterShell.Task.Task method)

 	symmetric_difference() (ClusterShell.NodeSet.NodeSet method)

 	

 	(ClusterShell.RangeSet.RangeSet method)

 	(ClusterShell.RangeSet.RangeSetND method)

 	symmetric_difference_update() (ClusterShell.NodeSet.NodeSet method)

 	

 	(ClusterShell.RangeSet.RangeSet method)

 	(ClusterShell.RangeSet.RangeSetND method)

T

 	

 	Task (class in ClusterShell.Task)

 	task (ClusterShell.Worker.Worker.Worker attribute)

 	Task.tasksyncmethod (class in ClusterShell.Task)

 	task_cleanup() (in module ClusterShell.Task)

 	

 	task_self() (in module ClusterShell.Task)

 	task_terminate() (in module ClusterShell.Task)

 	task_wait() (in module ClusterShell.Task)

 	timer() (ClusterShell.Task.Task method)

U

 	

 	union() (ClusterShell.NodeSet.NodeSet method)

 	

 	(ClusterShell.RangeSet.RangeSet method)

 	(ClusterShell.RangeSet.RangeSetND method)

 	union_update() (ClusterShell.RangeSet.RangeSet method)

 	

 	(ClusterShell.RangeSet.RangeSetND method)

 	

 	update() (ClusterShell.NodeSet.NodeSet method)

 	

 	(ClusterShell.RangeSet.RangeSet method)

 	(ClusterShell.RangeSet.RangeSetND method)

 	updaten() (ClusterShell.NodeSet.NodeSet method)

 	

 	(ClusterShell.RangeSet.RangeSet method)

V

 	

 	veclist (ClusterShell.RangeSet.RangeSetND attribute)

 	

 	vectors() (ClusterShell.RangeSet.RangeSetND method)

W

 	

 	wait() (ClusterShell.Task.Task class method)

 	walk() (ClusterShell.MsgTree.MsgTree method)

 	walk_trace() (ClusterShell.MsgTree.MsgTree method)

 	Worker (class in ClusterShell.Worker.Worker)

 	WorkerPdsh (class in ClusterShell.Worker.Pdsh)

 	

 	WorkerPopen (class in ClusterShell.Worker.Popen)

 	WorkerRsh (class in ClusterShell.Worker.Rsh)

 	WorkerSsh (class in ClusterShell.Worker.Ssh)

 	write() (ClusterShell.Worker.Exec.ExecWorker method)

 	

 	(ClusterShell.Worker.Pdsh.WorkerPdsh method)

 	(ClusterShell.Worker.Worker.StreamClient method)

 	(ClusterShell.Worker.Worker.StreamWorker method)

 Copyright 2016, Stephane Thiell.
 Created using Sphinx 1.3.5.

 _static/up.png

_static/minus.png

_static/comment-close.png

_static/down-pressed.png

_static/clustershell-nautilus-logo200.png
(&

search.html

 Navigation

 		
 index

 		
 modules |

 		clustershell 1.7.2 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Stephane Thiell.
 Created using Sphinx 1.3.5.

_static/plus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

_static/comment.png

_static/up-pressed.png

_static/down.png

